1. What is the pK_a of the conjugate acid of hydrazine, given that the pK_b of hydrazine is 5.77? Write the formula of the conjugate acid of hydrazine.

2. The pH of 0.800 M aqueous benzenesulfonic acid is 0.51. What is the value of K_a for benzenesulfonic acid?
 A) 0.19
 B) 0.12
 C) 0.90
 D) 0.44
 E) 0.51

3. Arrange the following species in order of decreasing pK_a:

 ![Chemical structures](image)

 A) H$_2$N-SO$_2$F
 B) H$_2$N-SO$_2$Ph
 C) H$_2$N-C(Ph)-CO
 D) H$_2$N-CH$_3$
 E) H$_2$N-C(Ph)

4. What is the pH of an aqueous solution that is 0.60 (CH$_3$)$_3$N ($K_b = 6.5 \times 10^{-5}$) and 0.95 M (CH$_3$)$_3$NHCl?
 A) 4.39
 B) 10.01
 C) 3.99
 D) 9.81
 E) 9.61
Answer Key

1. $pK_a = 8.23$ for N_2H_3^+
2. A
3.
4. E
Quiz 4 Answer Key

1. The conjugate acid of hydrazine is $\text{H}_2\text{N-NH}_3^+$. Its $pK_a = 14 - 5.77 = 8.23$

2. pH of 0.51 translates into $[\text{H}^+] = 0.309$ M.

\[
x^2/(0.800-x) = K_a \\
0.309^2/(0.800-0.309) = K_a \approx 0.19
\]

3. Decreasing pK_a means increasing acidity. pK_a decreases as follows:

 \[D > C > E > B > A\]

4. An aqueous solution containing a mixture of Me$_3$N and Me$_3$NHCl can be treated as a buffer. The pH of this solution:

\[
[\text{H}^+] = K_a \times [\text{HA}]/[\text{A}^-], \text{ where HA is the conjugate acid of the buffer, A}^- \text{ is the conjugate base, and } K_a \text{ is the acidity constant for the acid.}
\]

\[
K_a(\text{Me}_3\text{NH}^+) = K_w/K_b(\text{Me}_3\text{N}) = 1 \times 10^{-14}/(6.5 \times 10^{-5}) \approx 1.5 \times 10^{-10}
\]

So,

\[
[\text{H}^+] = 1 \times 10^{-14}/(6.5 \times 10^{-5}) \times 0.95/0.60 \approx 2.4 \times 10^{-10} \quad \text{pH} = 9.61
\]