1. Find the following indefinite integrals:

(a) \(\int (1 + \sin t)^9 \cos t \, dt \)
(b) \(\int \frac{1}{2x - 5} \, dx \)
(c) \(\int x^2 \sqrt{5x^3 - 1} \, dx \)
(d) \(\int \frac{e^x}{(1 - e^x)^2} \, dx \)
(e) \(\int \frac{\sec^2(\ln x)}{x} \, dx \)
(f) \(\int \cot x \, dx \)
(g) \(\int \frac{e^x}{5 + e^{2x}} \, dx \)
(h) \(\int \frac{\tan^{-1} x}{1 + x^2} \, dx \)
(i) \(\int \frac{dx}{\sqrt{9 - 4x^2}} \)
(j) \(\int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx \)

2. Find the following definite integrals:

(a) \(\int_{\pi/3}^{\pi} \frac{\sin x}{\cos^4 x} \, dx \)
(b) \(\int_{0}^{\pi/4} e^{\tan x} \sec^2 x \, dx \)
(c) \(\int_{0}^{\pi/4} \frac{x}{\sqrt{1 - x^4}} \, dx \)

3. Do problem #67 on page 382.

4. A particle moves along a straight line with acceleration

\[a(t) = t \sin(t^2 + \pi) \, \text{cm/sec}^2. \]

The particle’s initial velocity is 5 cm/sec. Find the velocity of the particle at time \(t \).

5. Is the following statement true or false?

If \(f(x) \) is continuous, then \(\int f'(x) \cos \left(f(x) \right) \, dx = \sin \left(f(x) \right) + C. \)

If it is true, briefly explain why. If it is false, explain why it’s false or else give an example (a graph or a formula) that shows that it’s false.