Self-Quiz on Section 8.2

1. Determine whether each of the following series converges or diverges. If it converges, find its sum.

(a) \(\sum_{n=0}^{\infty} 3 \left(-\frac{1}{5} \right)^n \)

(b) \(\sum_{n=0}^{\infty} \frac{1}{3} \left(\frac{3}{2} \right)^n \)

(c) \(\sum_{n=0}^{\infty} \frac{n + 3}{4n + 7} \)

(d) \(\sum_{n=0}^{\infty} \frac{4 + 2^n}{5^n} \)

(e) \(\sum_{n=0}^{\infty} \frac{n^2}{2n + 1} \)

(f) \(\sum_{n=1}^{\infty} \frac{5}{n} \)

2. Express \(5.4123 \) as a ratio of two integers.

3. Let \(\sum_{n=1}^{\infty} a_n \) be an infinite series whose \(n \)th partial sum is \(s_n = 4 + \frac{1}{n^2} \).

(a) Find the value of \(\sum_{n=1}^{6} a_n \).

(b) Find the value of \(a_3 \).

(c) Find the value of the sum \(\sum_{n=1}^{\infty} a_n \).

4. Suppose that \$1000 is deposited every year into a savings account that earns 5% in interest per year, compounded annually\(^*\). Find a formula for the amount of money in savings account immediately after the \(n \)th deposit. Use this formula to find the amount in the savings account after the 10th deposit.

Hint. Remember (from the handout on geometric series) that the \(n \)th partial sum of a geometric series can be written as \(s_n = \frac{a(1 - r^n)}{1 - r} \).

\(^*\) If interest is compounded annually, then the interest is computed and added to the savings account \(once \) per year.