1. Find the following:

(a) \(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \)
(b) \(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \)
(c) \(\arcsin(-1) \)
(d) \(\arctan(-1) \)
(e) \(\cos(\arcsin(-\frac{1}{2})) \)
(f) \(\csc(\arctan(-\frac{3}{2})) \)

2. In the following, find \(f'(x) \). You don’t need to simplify your answers.

(a) \(f(x) = x \tan^{-1}(\cos x) \)
(b) \(f(x) = \arcsin(3x) \)
(c) \(f(x) = \ln(\sin^{-1}(5x)) \)

3. What is the range of the function \(f(x) = 3 \arctan x \)?

4. Let \(f(x) = \arctan(x^2) \).

(a) Find the intervals on which \(f \) is increasing, and the intervals on which it is decreasing.

(b) Find the intervals on which \(f \) is concave up, and the intervals on which it is concave down.

5. Find the equation of the line tangent to the graph of \(f(x) = \tan^{-1}(e^{5x}) \) at \(x = 0 \).

6. Find the general antiderivative of each of the following:

(a) \(f(x) = \frac{1}{3\sqrt{1-x^2}} \)
(b) \(f(x) = \frac{4}{1+x^2} - \frac{\sec x \tan x}{2} \)