Math 5a Solutions to Worksheet on Sections 1.8 and 1.10

1. (a) \(x^2 + \frac{y^2}{4} = 1 \)
 - \(x \)-intercept(s): \(x^2 + 0^2 = 1 \) \(\Rightarrow \) \(x^2 = 1 \) \(\Rightarrow \) \(x = \pm 1. \)
 - \(y \)-intercept(s): \(0^2 + \frac{y^2}{4} = 1 \) \(\Rightarrow \) \(\frac{y^2}{4} = 1 \) \(\Rightarrow \) \(y^2 = 4 \) \(\Rightarrow \) \(y = \pm 2. \)

(b) \(y = \frac{x^2 - 9}{x + 2} \)
 - \(x \)-intercept(s): \(\frac{x^2 - 9}{x + 2} = 0 \) \(\Rightarrow \) \(x = \pm 3. \)
 - \(y \)-intercept(s): \(y = \frac{0^2 - 9}{0 + 2} \) \(\Rightarrow \) \(y = -\frac{9}{2}. \)

2. b \(\leftrightarrow \) Line 1; \ a \(\leftrightarrow \) Line 2; \ d \(\leftrightarrow \) Line 3; \ e \(\leftrightarrow \) Line 4; \ c \(\leftrightarrow \) Line 5.

3. \(m = \frac{-5 - 3}{4 - (-2)} = \frac{-8}{6} = -\frac{4}{3}. \)
 - (a) point-slope form: \(y - 3 = -\frac{4}{3}(x + 2) \) or \(y + 5 = -\frac{4}{3}(x - 4). \)
 - (b) slope-intercept: we can take \(y - 3 = -\frac{4}{3}(x + 2) \) and solve for \(y \), getting \(y = -\frac{4}{3}x + \frac{1}{3}. \)

4. (a) The line \(y + 2x = 1 \) can be written as \(y = -2x + 1 \) so it has slope \(-2. \) A line perpendicular to it has slope \(\frac{1}{2}. \) So the equation of \(L \) is \(y - 1 = \frac{1}{2}(x + 1). \) When we write this in slope-intercept form, we get \(y = \frac{1}{2}x + \frac{3}{2}. \)

(b) Graph of both lines:

5. The horizontal line that passes through the point \((3, -2)\) has equation \(y = -2. \) Its slope is 0.

6. The vertical line that passes through the point \((4, -3)\) has equation \(x = 4. \) Its slope is undefined.