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1 Introduction

1.1 Overview

Three fields of study that are now thought to be related in quite fundamental ways are algebraic
number theory, representations of real and p-adic Lie groups, and algebraic geometry over number
fields (note here that algebraic geometry over C looks like algebraic geometry over number fields
since any [finite] collection of equations has a finite number of coefficients so lives in some finite
extension of Q).

In particular, the topics of Galois representations (which are finite dimensional representations
of Galois groups of number fields), automorphic forms, and motives are thought to have strong
relationships with one onother.

A motive defines Galois representations through étale cohomology, and this is expected to be “bijec-
tive” in the sense that these representations should capture all of the interesting information about
the motive (Tate, Mazur).

The correspondence between Galois representations and automorphic forms is the subject of the
Langlands program.

The correspondence between motives and automorphic forms is due to Langlands and Mazur.

The work remaining to flesh out and understand these correspondences is huge - more than 50-100
years of work.

We will not discuss automorphic forms or motives much in this class, concentrating instead on Galois
representations. Galois representations are fundamental objects in algebraic number theory itself;
many of the interesting statement in ANT can be reformulated in terms of Galois representations.

1.2 Galois groups of algebraic closures

We start by recalling the analysis of Galois groups of number fields, local field (the completions of
number fields), and finite fields (the residue fields).

Definition 1. Let K be a field. Its algebraic closure K̄ is unique up to K-isomorphism, so we may
define

GK ∼= Gal(K̄/K)

Note that if K̄, K̄ ′ are two algebraic closures, and σ : K̄ → K̄ ′ a K-isomorphism between them, this
gives an isomorphism

Gal(K̄/K) ∼= Gal(K̄ ′/K) : τ 7→ στσ−1

This is not a canonical isomorphism, so that GK is only defined up to conjugacy class [in the group
of isomorphisms of algebraic closures of K].

Definition 2. The Krull topology on GK is defined by letting the system of neighborhoods around 1
be given by {Gal(K̄/L)} as L runs over all finite extensions of K in K̄ (for a fixed algebraic closure).
By translation, we define the system of neighborhoods around an arbitrary g ∈ GK .

This topology makes GK into a topological group. Composition and inverse are clearly continuous
since any two elements belong to some Gal(K̄/L) and they are continuous within that group.
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If we give Gal(L/K) the discrete topology, then

GK = lim←−
L finite Galois/K

Gal(L/K)

where L is inside some fixed algebraic closure is a topological isomorphism1. Since each Gal(L/K)
is compact and totally disconnected (it is discrete), so is GK ; thus GK is a profinite group. Note
that the Krull topology on GK is the same as the profinite topology. An open subgroup of GK is
of the form Gal(K̄/L) for L finite over K; a closed subgroup of GK is Gal(K̄/L) where L/K is not
necessarily finite. (Recall that every open subgroup is also closed).

First assume K = Fq is a finite field. Then any finite extension L/K is Galois and isomorphic to
Fqn with Galois group Z/nZ. There is a canonical isomorphism

Z/nZ→ Gal(L/K) : 1 7→ Frob

where Frob(x) = xq. Then

GK = lim←−Gal(L/K) = lim←−
n

Z/nZ ∼=
∏

l prime

Zl =df Ẑ

Also, 〈Frob〉 is dense in Ẑ.

Next, recall that local fields consist of R,C, finite extensions of Qp, and finite extensions of Fp((T )).
We will be working in characteristic zero only, so we will consider only the first three. Clearly
GC = {1} and GR = {1, σ} ∼= Z/2Z, where σ is complex conjugation.

If K/Qp is finite with ring of integers OK (recall that the ring of integers can be defined as the
valuation ring of the valuation on K), then OK is a DVR with unique maximal ideal mK and finite
residue field FK = OK/mK . In addition, if L/K is finite, it too is a local ring with ring of algebraic
integers OL and maximal ideal mL. We then have that

mKOL = me
L, e ≥ 1

e is the ramification index of L/K; if e = 1 we say that L is unramified over K.

In general, there exists a maximal unramified extension Lnr of K inside of L; if L/K is Galois, so is
Lnr, so there is an exact sequence

1→ IL → Gal(L/K)→ Gal(Lnr/K)→ 1

IL is called the inertia group of L/K. Note that Gal(Lnr/K) ∼= Gal(FLnr/FK); since it is true that
there is a Galois extension of each degree, upon taking limits, we get

1→ I → GK → Gal(K̄nr/K) = GFK
∼= Ẑ → 1

The structure of GK is fairly well-known in this case. Serre (Local Fields) proves that GK is solvable;
it is also known that GK is topologically finitely generated (i.e. there is a finite family that generates
a dense subgroup).

Finally, suppose K is a number field. Recall that a place of K is an equivalence class of nontrivial
absolute values |·| on K. The places of K are either finite, corresponding to the prime ideals of
K, or infinite, corresponding to embeddings K ↪→ C modulo complex conjugation. A valuation

1 To see this, use the universal property of inverse limits. Suppose A is a topological group with compatible maps
A → Gal(L/K) for L/K finite Galois. Then each element of A acts on every such L/K. But every element of K̄ is
in some finite extension, so we know how a acts on it. This gives the required map A→ GK .
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corresponding to a finite place p is 2−vp(·); a valuation corresponding to an infinite place σ is simply
|σ(·)|C.

Now if v is a place, and Kv the completion of K for an absolute value of v, then K is a local field -
R or C if v is infinite, and a finite extension of Qp is v is finite.

If L/K is finite, and v a place of K, then there are a finite number of places w of L extending v
(written w | v), and in fact

L⊗K Kv =
∏
w|v

Lw

If L/K is Galois, the Galois group acts transitively on the places of L extending v; we define

Dw = {g ∈ Gal(L/K) | gw = w}

called the decomposition group of w; Dw = Gal(Lw/Kv) (see, e.g. notes from 203a). If w,w′ | v
then Dw and Dw′ are conjugate subgroups of Gal(L/K).

Fix a place v of K. For each L algebraic over K, choose a compatible sequence of w | v (note that
any finite extension of Kv is Lw for some w), use the injection Dw ↪→ Gal(L/K) and take limits to
get

iv : GKv ↪→ GK

This map is not well-defined since we chose particular w’s, but it is well-defined up to conjugacy. If
v is a finite place, we get an exact sequence

0→ Iv → GKv → 〈Frobv〉 → 0

by taking the limit of the exact sequences associated with the decomposition groups.

We can study GK by studying the representations of GK and how they restrict to GKv .

Definition 3. Let K be a number field, S a finite set of finite places of K. Then GK,S is the
quotient of GK by the smallest closed normal subgroup of GK containing all inertia groups Iv for
v finite, v /∈ S. Note that normality of the subgroup both ensures that the quotient is a group and
makes irrelevant the fact that the map GK,v → GK is only defined up to conjugacy class.

An alternative definition for GK,S is that it is the Galois group of the maximal extension of K
unramified outside of S, written Knr,S .

Not much is known about the groups GK,S . For example, it is conjectured that GK,S is topologically
of finite type2.

If v is a finite place of K, then we have a composite map

ιv : GKv
iv−→ GK � GK,S

Clearly for v /∈ S, we have ιv(Iv) = 1 and thus ιv : 〈Frobv〉 → GK,S is well-defined up to conjugacy
class. The image of Frobv under this map is also called Frobv.

If v ∈ S, we still get a map ιv : GKv → GK,S ; it seems reasonable to believe that this map is
injective, but this is an open question.

Theorem 4. The conjugacy classes of the Frobv for v /∈ S are dense in GK,S.

2 Note that GK (and thus GK,S) is countably infinitely generated. For fix an algebraic closure K̄ of K; then K
has a finite number of extensions of a given degree, so a countable number of finite extensions, contained in K̄. Thus
GK is a countable limit of finite groups, so countable.
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Proof. This is an almost immediate consequence of the Cebotarev density theorem. The open
normal subgroups of finite index form by definition a basis for the topology of GK,S at the identity.
If g ∈ GK,S , then a basis of neighborhoods of g is the set of gU for U a finite index open normal
subgroup, so it suffices to show that each of these contains a conjugate of some Frobv, v /∈ S. For
each U , we can define KU to be the extension of K that is fixed by U ; this is Galois since U is
normal, and

GK,S/U = Gal(KU/K)

Given gU ∈ Gal(KU/K), the Cebotarev density theorem says that there is some v /∈ S such that
Frobv ∈ Gal(KU/K) is conjugate to gU . But Frob is functorial, so in GK,S , some conjugate of Frobv
is in gU .
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2 Galois representations

2.1 Introduction

Definition 5. A Galois representation of GK , where K is any field, over a topological field L, is a
finite-dimensional L-vector space V together with a continuous morphism ρ : GK → GLL(V ).

If (ρ1, V1), (ρ2, V2) are two representations, a morphism between them is an L-linear map f : V1 → V2

such that for every g ∈ GK ,
f ◦ ρ1(g)(v) = ρ2(g)(f(v))

Definition 6. A subrepresentation of (ρ, V ) is a subspace W ⊂ V such that for all g ∈ G, ρ(g)(W ) ⊂
W . A subrepresentation W is proper if W 6= {0},W 6= V . A representation is irreducible if
it has no proper subrepresentations. A complement for a subrepresentation W ⊂ V is another
subrepresentation W ′ of V such that W⊕W ′ = V . A representation is indecomposable if it cannot be
written V = W ⊕W ′ where W is a proper subrepresentation. Finally a representation is semisimple
if it is a direct sum of irreducible representations, i.e. if every subrepresentation has a complement.

If (ρ, V ) is a representation with dimension n, we can choose a basis of V over L and get a repre-
sentation ρ : GK → GLn(L).

Now let K be a number field.

Definition 7. Let (ρ, V ) be a Galois representation of K. Let v be a finite place of K. Then ρ
is unramified at v if ρ(Iv) = 1; that is, if Iv ⊂ ker ρ. (Note again that Iv is defined only up to
conjugacy, but ker ρ is normal, so all conjugates of any element σ ∈ Iv are also in ker ρ if σ is).

Equivalently, ρ is unramified at v if K ′ = K̄ker ρ is unramified over K at v, since ρ is unramified at
v if and only if Iv ⊂ ker ρ if and only if K̄Iv ⊃ K̄ker ρ. But K̄Iv/K is unramified at v.

Definition 8. (ρ, V ) is unramified outside of S if it is unramified at each place v /∈ S. (ρ, V ) is
unramified almost everywhere if there is a finite set S of finite places of K such that ρ is unramified
outside of S.

Proposition 9. If ρ has finite image, then ρ is unramified almost everywhere (that is, ρ is unramified
outside of a finite set of primes).

Proof. Since ρ has finite image, it factors through a finite quotient of GK , which is a finite group
that is the Galois group of a finite Galois extension K ′/K. ρ is ramified at v iff ρ(Iv) 6= 1, which
happens iff v ramifies in K ′. Thus ρ is ramified precisely where K ′/K is ramified.

Proposition 10. If S is a finite set of primes and ρ is unramified outside of S, then ρ factors
through GK,S:

GK
ρ //

""EEEEEEEE GLL(V )

GK,S

ρ

::ttttttttt

Proof. The kernel of the map GK → GK,S is the smallest normal subgroup containing all Iv for
v /∈ S, and this subgroup is in the kernel of ρ.
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We call the induced map GKS → GLL(V ) ρ as well.

If ρ is unramified outside of S and v /∈ S, then ρ(Frobv) is an element of GLL(V ) well-defined
up to conjugacy class. This means that tr ρ(Frobv), det ρ(Frobv), and χρ(Frobv) (the characteristic
polynomial of ρ(Frobv)) are all well-defined.

Theorem 11. If charL = 0, then a semisimple Galois representation unramified outside of S is
completely determined up to isomorphism by the data of tr ρ(Frobv) for v /∈ S.

The proof uses the following standard fact about representations of groups: A semisimple represen-
tation of a group G over a field L of characteristic zero is determined by its character, which is the
map G → L : g → tr ρ(g). Both hypotheses are required. Thus, if L does not have characteristic
zero, consider the representation consisting of p + 1 copies of the trivial representation; this has
character identical to that for the trivial representation. If V is not semisimple, choose a proper
subrepresentation W ⊂ V that is not a direct summand. Then as vector spaces, V = W ⊕V/W ; the
matrix of V consists of the matrix of W in the upper left, zeros in the lower left, the matrix of V/W
in the lower right, and some arbitrary nonzero entries in the upper right. The matrix of W ⊕ V/W
as a representation is identical except that it has zeros in the upper right. Thus the trace of these
two representations is the same, but the representations themselves are not.

Proof. tr and ρ are both continuous, so tr ρ is as well. Since Frobv for v /∈ S is dense in GK the
values of tr ρ(g) are determined for all g ∈ G and thus the representation is.

2.2 Artin representations

Suppose we take L = C in a Galois representation . Such a Galois representation is called an Artin
representation. It turns out that these representations are not general enough, primarily because
the topologies on C and on K are quite different. In fact

Theorem 12. Every Artin Galois representation has finite image.

Corollary 13. Every Artin Galois representation ρ 1) is semisimple, 2) is unramified almost ev-
erywhere, and 3) factors through some GK,S for S finite, and if v /∈ S, then ρ(Frobv) is well-defined
up to conjugacy and has eigenvalues that are all roots of unity. Thus tr(ρ(Frobv)) is a cyclotomic
integer.

Proof. Since ρ has finite image, it factors through a finite quotient of GK , so it is semisimple by
standard finite group representation theory. By Proposition ??, ρ is unramified except at a finite
number of primes. Since ρ is unramified almost everywhere, by Proposition ?? it factors through
GK,S for S finite containing the set of primes at which ρ is ramified. The rest follows from finite
group representation theory.

We start the proof of the theorem above with the following lemma, which holds actually for all Lie
groups. Note that it does not hold for, e.g., Zp, since Z/pnZ are arbitrarily small.

Lemma 14. GLn(C) has no arbitrarily small subgroups except for {I}; that is, there is a neighbor-
hood U of {1} that contains no nontrivial subgroup.

Proof. Consider the map exp : Mn(C) → GLn(C). This is not a group homomorphism, but it is a
diffeomorphism from a neighborhood W of 0 ∈Mn(C) to an open neighborhood V of I ∈ GLn(C).
We may assume that W = B(0, r) for some r > 0 in some norm. Take W ′ = B(0, r/2), and
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U = exp(W ′). Claim U is the U asserted by the lemma. Suppose not, and that G ⊂ U is a
nontrivial subgroup. Choose I 6= g ∈ G; then g = exp(x), x ∈ W ′, and 0 < ‖x‖ < r/2. Thus there
is some n ∈ Z such that r/2 ≤ ‖nx‖ < r. Then exp(nx) = xn ∈ G (this is obvious from the power
series for exp). But xn /∈ U since nx /∈W ′.

Proof. (of theorem regarding Artin representations) Suppose ρ : GK → GLn(C) is an Artin repre-
sentation, and choose U as in the theorem. Then ρ−1(U) is a neighborhood of 1 ∈ GK , so it contains
some open subgroup H of GK . Thus ρ(H) ⊂ U so that H ∈ ker ρ. But GK is compact and H has
finite index since it is an open subgroup of a compact space. Thus ρ(G) is finite. (Alternatively, a
basis of open sets consists of normal open subgroups, and then ρ factors through G/H).

Example 15. Let K = Q, L a quadratic extension; then Gal(L/Q) ∼= Z/2Z. Define an Artin
representation εL by the following composition:

GQ
restriction−−−−−−−→ Gal(L/Q) ∼= Z/2Z ∼= {±1} ⊂ C∗ = GL1(C)

εL is continuous since the kernel of the restriction map is open, and εL is ramified at places where
L/Q is ramified, since ker εL = Gal(Q̄/L) (this follows from the definition: εL is ramified at v if and
only if Q̄ker εL/K is ramified at v; but Q̄ker εL = Q̄Gal(Q̄/L) = L.

If p is a prime unramified in L, then

εL =

{
1 when p splits in L

−1 when p is inert in L

This follows from the fact that this formula holds for the image of Frobp ∈ Gal(L/K), which is a
standard result from the theory of quadratic extensions3 If you embed L ⊂ Q(ζn), you can regard
εL as a Dirichlet character of Z/nZ.

Example 16. Let P (x) = x3 + ax2 + bx + c ∈ Z[x] be irreducible, and L its decomposition
field in some fixed algebraic closure of Q. Assume that [L : Q] = 6, so that Gal(L/Q) ∼= S3.
S3 acts on C2: take the obvious action of S3 on C3 and take the subrepresentation on the plane
V = {x1 + x2 + x3 = 0}. This gives a two-dimensional Artin representation

Gal(Q̄/Q)→ Gal(L/Q) ∼= S3 → GL(V )

that is unramified at primes unramified in L.

As an exercise, fill in the blanks:

tr(ρ(Frobp)) =


? ?
? ?
? ?

where the conditions are some arithmetic property of P (x) relative to p.

All Artin representations are like this - they have finite image, so factor through some finite group
and thus arise from a representation of Gal(L/K) for some finite extension L of K.

3 Writing L = K(
√
d), note that FrobP is determined by its value on

√
d, and has the property that FrobP(a) ≡ ap

mod P. So FrobP(
√
d) ≡ dp/2 mod P and thus FrobP(

√
d)/
√
d ≡ d(p−1)/2 mod p and hence mod p, since it

happens to be in Q, so it is exactly the Legendre symbol.
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2.3 The l-adic cyclotomic character

2.3.1 Definitions

We now look at more general representations, `-adic representations, which are Galois representations
ρ : GK → GLL(V ) where L is a finite extension of Qp and V is a finite dimensional vector space
over L.

Let K be a number field, ` a prime. We will define the `-adic cyclotomic character ω` : GK → Q∗` =
GL1(Q`).

Let n ≥ 1 be an integer, and K(µ`n) ⊂ K̄ the cyclotomic field (i.e. adjoin all `nth roots of unity to
K from K̄. This is Galois over K, and there is a natural homomorphism

ω`,n : Gal(K(µ`n)/K) ↪→ (Z/`nZ)∗

that is defined as follows. It suffices to define ω`,n on a primitive `nth root of unity; for any such,
and for σ ∈ Gal(K(µ`n)/K), define ω`,n(σ) by σ(ζ) = ζω`,n(σ); σ(ζ) is also a primitive root of unity.
The map is obviously injective. We thus get a system of maps

Gal(K(µ`)/K) � � // (Z/`Z)∗

GK

66llllllllllllllll

((RRRRRRRRRRRRRRRR

##FFFFFFFFFFFFFFFFFFFFFFF
// Gal(K(µ`2)/K)

OO

� � // (Z/`2Z
)∗

OO

Gal(K(µ`3)/K)

OO

� � // (Z/`3Z
)∗

OO

. . .

OO

� � // . . .

OO

Let K∞ = lim−→n
K(µ`n); write Γ = Gal(K∞/K). It is easy to see that Γ = lim←−Gal(K(µ`n)/K), so

taking inverse limits we get a map

ω` : GK → Γ→ Z∗` ⊂ Q∗`

This the `-adic cyclotomic character. Note that the embeddings Gal(K(µ`k)/K) ↪→
(
Z/`kZ

)∗ are
in fact independent of the choice of primitive root of unity above, so the cyclotomic character can
be seen as a canonical embedding of Γ into Z∗` .

In what follows, we will freely write ωl,n for the map either from Gal(K(µ`n)/K) or from GK .

Theorem 17. ω` is continuous and is unramified at all places of K not dividing `. Further, if v is
a finite place of K not dividing `, then ω`(Frobv) is well-defined (not just up to conjugacy, since Q∗`
is abelian), and is equal to the size of the residue field of v.

Proof. That ω` is continuous follows from the fact that each ωl,n from GK is continuous since the
kernel is an open Galois subgroup.

The field K(µ`n) is unramified over K at all places not dividing `, so this is true for ω`,n. Thus ω`
is trivial on all I`,n and thus on I.

A sketch for the third statement in the case where K = Q is as follows: The size of the residue field
of p in Q∗` , for p 6= `, is p, so the statement is simply that ω`(Frobp) = p. But this is true for each
ω`,n, so it is true in the limit.
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In particular, note that ω`(Frobp) is rational in Q∗p; this attribute of a Galois representation is called
“rationality of representation”.

Corollary 18. If v - `, then ω`(Frobv) = N(v) =df ‖OKv/mv‖.

Note that N(v) ∈ Z and is defined for almost all v, and if v - `, `′, then ω`(Frobv) = ω`′(Frobv).
Thus ω`(Frobv) does not depend on ` and we have a compatible system of Galois representations.

Theorem 19. If K ′/K is a finite extension, then ωK` |GK′= ωK
′

` .

Proof. ω` is defined by the action of GK on the `n roots of unity, and that action is identical over
K ′ since K,K ′ are contained in the same algebraic closure of K.

Theorem 20. ω`(GK) is an open subgroup of finite index in Z∗` .

Proof. It is in Z∗` by construction. Now, ω`,n(GQ) is surjective since each map is an isomorphism, so
in the limit ω`(GQ) is surjective. GK is compact in GQ, so that ω`(GK) is closed. By the previous
theorem, since K/Q is finite, ω`(GK) is of finite index in Z∗` and thus open.

2.3.2 Summary of CFT

Recall that we have a commutative diagram, for any place v of K,

A∗K/K∗(K∗∞)0
∼=
Art

// GabK

K∗v

OO

Artv // GabKv

OO

where K∗ is the image of K in the adèles under the diagonal embedding and (K∗∞)0 is the connected
component of the identity in the product of the completions at the archimedean places; i.e. it is
(C∗)s(R+)r so that each real place contributes Z/2Z to the result. The map along the top row is
called the Artin map and is an isomorphism; the map along the left-hand side embeds K∗v into the
component corresponding to the place vand the map on the right-hand side arises from the fact that
we have a map GKv ↪→ GK defined up to conjugacy class, so that in the abelianizations, the map is
well-defined.

The bottom map is called the local Artin map. If v is nonarchimedean (finite), then Artv is injective
with dense image, while if v is archimedean, then kerArtv = (K∗v )0 and imArtv = GabKv (which is
either trivial or congruent to Z/2Z).

Additionally, if v is a finite place, we can add a third row to the diagram:

A∗K/K∗(K∗∞)0
∼=
Art

// GabK

K∗v

OO

Artv // GabKv = Gal(Kab
v /Kv)

OO

O∗Kv
?�

OO

Artv
∼=

// I(Kab
v /Kv)
?�

OO
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where the right-hand map is actually an inclusion. Thus the inertia group of the abelianization is
the elements of norm 1. We also see that if v is a finite place, then

Artv(πv) = Frobv

if πv is a uniformizer; this map is well-defined since both πv and Frobv are well-defined up to elements
of O∗Kv and the inertia group respectively, and those groups are isomorphic through Artv.

Since ω` : GL → Q∗` , which is an abelian group, the map factors through GabK , the abelianization of
GK ; we call the factor map ω` : GabK → Q∗` as well.

2.3.3 Computation of the l-adic cyclotomic character on the rationals

We will use the adelic representation of GabK to describe ω` in the case K = Q. Define ω̃` = ω` ◦Art;
describing ω̃` means describing its action on each embedded subgroup Q∗p as well as R∗.

Note that for each prime p, the map

Q∗p ↪→ A∗Q → A∗Q/Q∗R∗+
is actually injective since if x ∈ Q∗p ∩ Q∗R∗+ then x maps to (1, . . . , 1, x, 1, . . . ) ∈ A∗Q. But the
embedding of Q∗R∗+ into A∗Q is diagonal, so if this is in the kernel, we must have x = 1.

If p 6= ` is a prime, we wish to compute ω̃`|Q∗p . Recall that Q∗p ∼= Z∗p× pZ, and that the inertia group
of GabQp corresponds to O∗Qp = Z∗p. Since ω` is unramified at p, it is trivial on the inertia group and
thus ω̃` is trivial on Z∗p. It remains to say what it does to p. But ω̃`(p) = ω`(Frobp) = p.

Consider next the case of an infinite (real) prime. ω̃` |R∗ is trivial on R∗+, and R∗ = R∗+ × {±1}.
Thus is suffices to compte ω̃`(−1). But this is just ω` applied to complex conjugation in Gal(C/R),
so is either ±1. Since the `n roots of unity are not real, complex conjugation is not the identity, so
we have ω̃`(−1) = −1.

Finally, we compute ω̃`|Q∗` . Here ω` is not trivial on O∗` , and we can’t really apply the CFT diagram.
But we can use the embedding of Q∗ into the adèles together with the fact that ω̃` is trivial on Q∗.
For x ∈ Q∗, write

x = ε · `n` ·
∏
p 6=`

pnp , ε = ±1

x embeds as (x, x, . . . ) ∈ A∗Q, so

1 = ω̃`(x) =
∏

v a place of Q
ω̃`|Q∗v (x)

= ω̃`|Q∗` (x) · ω̃`|R∗ (x) ·
∏
p 6=`

ω̃`|Q∗p (x)

= ω̃`|Q∗` (x) · ε ·
∏
p 6=`

pnp

Here ω̃`|Q∗p (x) = pnp since all other factors of x end up in Z∗p inside Q∗p, and ω̃` maps all of those to
1. Thus we get for x ∈ Q

ω̃`|Q∗` (x) =
`n`

x
Finally, since Q∗ is dense in Q∗` , we have for x ∈ Q∗`

ω̃l|Q∗` (x) =
`v`(x)

x

In particular, on Z∗` , ω̃`(x) = 1
x .
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2.4 The Tate module of an elliptic curve

Let K be a field and E/K an elliptic curve defined over K. Let l be a prime not equal to the
characteristic of K. Then for n ≥ 1 we have the groups

E(K̄)[`n] = ker[`n] : E(K̄)→ E(K̄)

This group is isomorphic to (Z/`nZ)2. Also, GK = Gal(K̄/K) acts on E(K̄)[`n] by transforming
the coordinates of any point in this group; the image under this action is again in E(K̄)[`n] since
the elliptic curve is defined over K so that the Galois group leaves the equation of E fixed.

We get a sequence of maps [`] : E(K̄)[`n+1]→ E(K̄)[`n] that is simply the projection map(
Z/`n+1Z

)2 → (Z/`nZ)2

Definition 21. The Tate module of E is T`(E) = lim←−E(K̄)[ln]

It is clear from the above that T`(E) ∼= Z2
` , and that it too commutes with the GK action since

multiplication by ` is defined over K. Thus GK acts continuously on T`(E).

Definition 22. V`(E) = T`(E)⊗Z` Q`.

It is a fact that V`(E) is a continuous representation of GK of dimension 2.

Proposition 23. V` is a covariant functor from the category Ell(K) of elliptic curves over K and
morphisms to Rep(GK ,Q`) of representations of GK on Q` where the morphisms are maps of vector
spaces compatible with the group actions. In addition, V` maps isogenies to isomorphisms.

A sketch of the proof is as follows. For the first part, a map E → E′ gives maps E(K̄)[`n] →
E(K̄ ′)[`n] that commute with the GK action, so we get maps T`(E)→ T`(E′) and V`(E)→ V`(E′)
that do as well. For the second part, assume φ : E → E′ is an isogeny with deg φ = d. Then we
know that there is φ̂ : E′ → E with

[d] = φ ◦ φ̂ = φ̂ ◦ φ

Then

V`([d]) = V`(φ) ◦ V`(φ̂)

V`([d]) = V`(φ̂) ◦ V`(φ)

and V`([d]) is simply multiplication by d in the vector space V`(E) so is an isomorphism of V`(E).
Thus the maps on the right are isomorphisms as well.

Note that [n] is an isomorphism in Q` even if ` | n; this is not the case in Z`.

We thus have a map (actually a homomorphism of groups)

f : HomK(E1, E2)→ HomGK (V`(E1), V`(E2))

that maps nonzero isogenies to isomorphisms. It follows that if there is any nonzero isogeny between
two elliptic curves E1, E2, then their Tate modules are isomorphic as GK representations.

Theorem 24. HomK(E1, E2) ↪→ HomGK (V`(E1), V`(E2)), and injectivity is preserved on tensoring:
HomK(E1, E2)⊗Z Q ↪→ HomGK (V`(E1), V`(E2)).

12



See Silverman for a discussion of this issue.

In general, this map is not surjective. For example, if K = K̄, then GK is small so there are lots of
GK homomorphisms.

We want to analyze the Tate module over number fields; in order to do this, we first look at the
finite field and local field cases.

If K is a finite field, say K = Fq, q = pn, ` 6= p, then V`(E) is a GK ∼= Ẑ module. We have the
Frobenius endomorphism φ ∈ EndK(E) : (x, y) 7→ (xq, yq).We can also define φ` ∈ GLQ`(V`(E)) ∼=
GL2(Q`) by

φ` = V`(E)(Frob)

that is, the image of the Frobenius of K̄/K (a generator of Ẑ) under the representation map.

Theorem 25. 1. #E(K) = deg(1− φ)

2. detφ` = deg φ = q = #K

3. trφ` = 1 + detφ` − det(1− φ`) = 1 + deg φ− deg(1− φ)

4. #E(K) = 1 + q − tr(φ`)

5. The eigenvalues of φ` are algebraic integers that are either real and equal, or complex and
conjugate. If we denote them α, β, we have |α| = |β| = q1/2.

Proof. Much of this is in Silverman §V.2. The first equality in (3) is true of any 2× 2 matrix.

Corollary 26. (Hasse, Weil conjecture)

|#E(K)− q − 1| ≤ 2
√
q

Proof. The left-hand side is |tr(φ`)| = |α+ β| ≤ 2
√
q.

Corollary 27. Two isogenous elliptic curves over K have the same number of points in K.

Proof. If they are isogenous, then their Tate modules are isomorphic, so φ` is conjugate in the two
modules so have the same trace. By part (4) of Theorem ??, this means they have the same number
of points in K.

Theorem 28. (Tate) If K is a finite field, then

HomK(E1, E2)⊗Z Q ∼= HomGK (V`(E1), V`(E2))

Now suppose K is a local field with ring of integers O, maximal ideal m, and residue field k.

Definition 29. E/K has good reduction if and only if a minimal Weierstrass equation for E has
∆ ∈ O∗.

If E/K has good reduction, we can reduce the minimal equation modulo m to get an equation Ẽ/k
that has nonzero discriminant and thus is nonsingular over k.

13



Theorem 30. (Neron-Ogg-Shafarevich) E/K has good reduction if and only if V`(E) is unramified.
In addition, if E/K has good reduction, then V`(E) ∼= V`(Ẽ) via the reduction map, and the reduction
map commutes with the Galois actions. That is, we have the following diagram:

V`(E)
∼= // V`(Ẽ)

	 	

1 // IK // GK // Gk // 1

Note that the commutativity of the diagram proves one direction of the if and only if, since if E/K
has good reduction, clearly the image of IK acts trivially on V`(Ẽ); since the actions are compatible,
IK acts trivially on V`(E) and V`(E) is unramified.

Corollary 31. If E,E′ are isogenous over K then either both have good reduction or neither does.

This follows easily from the theorem together with the fact that isogenous curves have isomorphic
Tate modules.

Note that if E/K has good reduction, then detV`(E)(Frob) = q (Frob is well-defined in GK because
IK acts trivially since V`(E) is unramified.). Also

1 + q − trV`(E)(Frob) = #Ẽ(k)

This follows from the commutative diagram above plus the corresponding equality for finite fields.
We can lift Frob from Gk, and the actions are compatible.

Now let K be a number field, E/K an elliptic curve, and V`(E) the Tate module with the action of
GK .

Theorem 32. If v is a finite place of K, v - `, then E has good reduction at v if and only if V`(E)
is unramified at v.

To see why this is so, observe first that for E/K, K ′ ⊃ K a finite extension, we have V`(E/K ′) =
V`(E)|GK′ by the definition of the action - if you look at `n torsion, the action of GK and GK′ on
that torsion is identical. One can make the same argument for the embedding GKv ↪→ GK via the
decomposition group. Don’t

understand
this.Corollary 33. V`(E) is unramified at every place where E has good reduction and that does not

divide `, so that V`(E) is unramified almost everywhere.

Corollary 34. If E/K,E′/K are isogenous, then they have the same set of primes of bad reduction.

Proof. Note that V`(E) ∼= V`(E′). The theorem then implies that for primes not dividing `, the
curves have good reduction at the same set of primes. But by choosing a different `′, we can then
cover all primes.

Theorem 35. Let v - l be a finite place of E, and assume E has good reduction at v. Let kv be the
residue field at v. Then

det(V`(E)(Frobv)) = N(v) = #kv

1 + #kv − tr(V`(E)(Frobv)) = #Ẽv(kv)

In particular, both the determinant and the trace of V`(E)(Frobv) are rational integers for every
finite place v. This theorem shows that the Tate module contains a lot of information about the
elliptic curves, since it counts points on the curve modulo different primes.
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Corollary 36. detV`(E) = ω` and V`(E)∗ = V`(E)⊗ ω−1
` .

Proof. The first of these follows since ω`(Frobv) = N(v), so the representations agree on Frobv for
almost all places so are the same. The second follows since for any 2-dimensional representation
ρ : G→ GL(V ) we have ρ∗ = ρ⊗ (det ρ)−1 4.

Theorem 37. (Serre) Let K be a number field with EndK(E) = Z (note that we do not assume
that EndK̄(E) = Z; the condition assumed is much weaker). Then V`(E) is irreducible.

This theorem says that we have an irreducible two-dimensional representation of GK , which allows
us to get information about the nonabelian part of GK ; CFT talks only about the abelianization.

We start by proving a lemma:

Lemma 38. Assume charK = 0, E/K an elliptic curve with EndK(E) ∼= Z. If E′
f−→ E,E′′

g−→ E
are K-isogenies with cyclic kernels Z/n′Z,Z/n′′Z where n′ 6= n′′, then E′ is not isomorphic to E′′

over K.

Proof. Assume E′ h−→ E′′ is an isomorphism, and consider the composite map

E
f̂−→ E′

h−→ E′′
g−→ E

This map is [a] for some a by the assumption on EndK(E) and thus n′n′′ = a2. Now obviously
kerE(K̄)[a] ⊂ (Z/aZ)2, but by the above, kerE(K̄)[a] is an extension of Z/n′Z by Z/n′′Z, so by
elementary abelian group theory, we get a = n′ = n′′5.

Proof. (of Serre’s theorem) Assume V`(E) is reducible. Then there is a one-dimensional line D ⊂
V`(E) that is stable under GK . Define D0 = D ∩ T`(E); since T`(E) is a rank 2 lattice, isomorphic
to Z2

` , we have that D0 is a Z` submodule of rank 1, thus isomorphic to Z` ⊂ T`(E), and that it is
stable under the GK action. (Note that D0 6= T`(E) since D is proper, and note that it is free since
Z2
` is free). Now, claim the image of D0 in

T`(E)/`nT`(E) = T`(E)⊗Z` Z/`nZ = E[`n]

is Z/`nZ and is stable under GK . (The final equality in the above formula holds because the tensor
product reduces to just the points with ln torsion or less). To see this, consider the short exact
sequence

0→ D0 → T`(E)→ D1 → 0

In general, in an exact sequence like this, D1 is not isomorphic to Z` (e.g. D0 = `Z`). But in this
case it is since T`(E)/D0 injects into V`(E) so is torsion-free. Then tensor with Z/`nZ to get Why is this an

injection?
· · · → Tor(D1,Z/`nZ)→ D0 ⊗Z` Z/`nZ→ T`(E)⊗Z` Z/`nZ→ D1 ⊗Z` Z/`nZ→ 0

Since D1
∼= Z`, it is torsion-free and the resulting sequence is short exact. Why does this

show the claim?
Now define En = E/ imD0; this curve is defined over K , so we get an isogeny E → En with kernel Why defined

over K?
4 Recall that the dual of ρ is defined by ρ∗(g) = (ρ(g−1))T = (ρ(g)−1)T . Thus if ρ(g) =

„
a b
c d

«
, then ρ∗(g) =

(det ρ(g))−1

„
d −c
−b a

«
. But that matrix is similar to ρ(g) since„

0 1
−1 0

« „
d −c
−b a

« „
0 1
−1 0

«−1

=

„
a b
c d

«
5 For since Z/n′Z injects into Z/aZ×Z/aZ, the image must have an element of order exactly n′, so that n′ | a and

n′ ≤ a. Similarly, the quotient has an element of order n′′, so that a ≥ n′′. But n′n′′ = a2, and the result follows.
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Z/lnZ and thus a dual isogeny En → E with the same kernel, for every n. By the above lemma
(and since EndK(E) ∼= Z), the En are not pairwise isomorphic over K. The result then follows by
contradiction using

Theorem 39. (Shafarevich) Let K be a number field, S a fixed finite set of finite places of K.
Then there are only a finite number of K-isomorphism classes of elliptic curves over K with good
reduction outside of S (Silverman, AEC, Ch. IX, /textsection 6).

Corollary 40. If K is a number field and E/K an elliptic curve, then there are only finitely many
elliptic curves E′/K isogenous to E, up to K-isomorphism.

The corollary clearly follows from Shafarevich’s theorem: any curve isogenous to E has an isomorphic
Tate module and thus has bad reduction at exactly the places where E does, so by the theorem
there are only a finite number of such, up to K-isomorphism.

Here is a sketch of the proof of Shafarevich’s theorem. First enlarge S such that OK,S , the set of
elements of K that are integers outside of S (i.e. whose valuation is ≥ 0 except at S), is a PID (see,
for example, www.math.uga.edu/˜mbaker/Sunits.pdf). If we prove the result for this S, clearly
we are done. Now, an elliptic curve E/K with good reduction outside S has minimal equation
y2 = 4x3 + ax + b for a, b ∈ OK,S and ∆ invertible in OK,S . Since ∆ is well-defined up to twelfth
powers, we have

∆ ∈ O∗K,S/
(
O∗K,S

)12

and this group is finite since OK,S is finitely generated (Dirichlet’s unit theorem). So we may
assume that ∆ is fixed. ∆ = 4a3−27b2, and we are reduced to the problem of discovering how many
solutions this Diophantine equation has in OK,S , which is a question about integral points on an
elliptic curve. This question is answered by Siegel’s theorem (Silverman, AEC, Ch. IX, §3), which
says there are only a finite number.

It turns out that the same statement holds for abelian varieties. The proof above does not carry
through, however, since we do not have nice equations for these varieties.

In fact a stronger statement than Serre’s theorem is true. We say that V`(E) is absolutely irreducible
if it remains irreducible when extended to an algebraic closure, i.e. if V`(E) ⊗ Q̄` is irreducible.
For example, SO(2,R) ∼= S1 acts on R2 as an irreducible representation over R, but this becomes
reducible over C (since it has eigenvalues in C). The theorem then becomes:

Theorem 41. If EndK(E) 6∼= Z, then V`(E) is not absolutely irreducible.

(See Problem Set 1, Ex. 5.3, Problem Set 2, Ex. 2.4).
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3 Étale cohomology

3.1 Basic Properties

References: SGA4 and SGA5 (about 2000 pages), Milne’s Étale Cohomology (about 350 pp), and
SGA 4 1/2 (Deligne, first paper, about 40 pp).

Let K be a field with ` 6= charK. Grothendieck constructed contravariant functors for i = 0, 1, 2, . . .

Algebraic Varieties/K → Finite-dimensional representations of GK on Q`

that map X 7→ Hi(X,Q`), and map a morphism f : X → Y defined over K to its pullback
f∗ : Hi(Y,Q`)→ Hi(X,Q`).

Basic properties:

1. Hi(X,Q`) = 0 for i > 2 dimX.

2. If K ′/K is an extension, then Hi(X,Q`) ∼= Hi(XK′ ,Q`) as Q` vector spaces (i.e. they have the
same dimension); this isomorphism is functorial. If further K ′/K is algebraic, then GK′ ↪→ GK
andHi(XK′ ,Q`) = Hi(X,Q`)|G′K asGK′ representations, and this correspondence is functorial
as well. Note that the larger K gets the less information we get out of the cohomology groups
since GK gets smaller.

3. There is a cup product

Hi(X,Q`)×Hj(X,Q`)→ Hi+j(X,Q`)

that is a bilinear morphism of Galois representations and is functorial in X. In addition, for
a+ b− i we have

Ha(X,Q`)⊗Hb(Y,Q`)→ Hi(X × Y,Q`)

This map comes about from considering the projections X × Y → X,Y which gives pullback
maps

Ha(X,Q`)→ Ha(X × Y,Q`)

Hb(Y,Q`)→ Hb(X × Y,Q`)

and thus a bilinear map

Ha(X,Q`)×Hb(Y,Q`)→ Ha(X × Y,Q`)×Hb(X × Y,Q`)

which, by universality of ⊗ together with the cup product above, gives the required map. One
also has the Künneth formula∑

a+b=i

Ha(X,Q`)⊗Hb(Y,Q`) ∼= Hi(X × Y,Q`)

4. There is a version of Poincaré duality. If X is proper (projective) and smooth (regular every-
where) over K, then

• H2 dimX(X,Q`) ∼= Q` has dimension 1 and GK acts by ω− dimX
l (note that we defined the

cyclotomic character only for number fields, but it is possible to extend this definition).
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• If i+ j = 2 dimX, then

Hi(X,Q`)×Hj(X,Q`)→ H2 dimX(X,Q`)

is nondegenerate, and thus Hi and Hj are dual as Q` vector spaces and as Galois repre-
sentations, so

• Hi(X,Q`) ∼= Hj(X,Q`)∗⊗Q`ωl canonically if i+j = 2 dimX. As a special case, H0 ∼= Q`

with the trivial action.

5. If K = C, then Hi(X,Q`) = Hi(X(C),Q`) where the right-hand side is, say, singular cohomol-
ogy. This explains why (over C, anyway) Hi = 0 for i > 2 dimX. Note that combining this
with point (2), we see that in characteristic zero we can compute the dimensions of Hi(X,Q`)
by computing cohomology over C.

6. If A is a complete DVR with maximal ideal m = (π). Let K be the fraction field of A and
k = A/m. These rings provide a link between characteristic zero and characteristic p fields.
Thus SpecA = {m, (0)}; m is closed, while the closure of (0) is the whole space. (0) is called a
generic point because it generates SpecA. If X is a proper, smooth scheme over SpecA, write
Xk for the fiber over m and XK for the fiber over (0). Then it can be shown that Xk (resp.
XK) is a proper and smooth variety over k (resp. K).

Theorem 42. (Grothendieck) We have a commutative diagram

Hi(XK ,Q`)
∼= // Hi(Xk,Q`)

	 	

1 // IK // GK // Gk // 1

The argument is more difficult, but similar to that used for the corresponding theorem for the Tate
modules. (Note that the map GK → Gk arises from the fact that K is complete so that any place
v of K has a unique extension to a place w of L ⊃ K).

Example 43. Let E/Qp be an elliptic curve with good reduction at p and assume p 6= l. For
example, y2z = x3 + axz2 + bz3 for a, b ∈ Zp with ∆ ∈ Z∗p. This equation defines a proper and
smooth scheme E over Spec Zp since a, b ∈ Zp, and we get EQp = E,EFp = Ẽ. Thus we can
investigate Hi(E) by investigating Hi(Ẽ).

Definition 44. Let V/K be an algebraic variety, proper and smooth, and K a nonarchimedean
local field with ring of integers A. V has good reduction if there is a scheme X over SpecA proper
and smooth such that XK

∼= V .

Theorem 45. X/K has good reduction if and only if Hi(X,Q`) is unramified.

Proof. This is a diagram trace from the Grothendieck theorem above. how does this
work?

Theorem 46. Let E/K be an elliptic curve; then

1. dimH0(E,Q`) = dimH2(E,Q`) = 1,dimH1(E,Q`) = 2.

2. If f, g : E′ → E are isogenies, we may define f∗, g∗ : H1(E,Q`) → H1(E′,Q`). Then
(f + g)∗ = f∗ + g∗. (Note that addition on the left is addition on the elliptic curve, while
addition on the right is addition in the vector space).

18



Proof. (1): The statement is clear for H0 and H2 from the above basic properties. For H1, assume
first that K = C. Then

dimH1(E,Q`) = dimH1(E(C),Q`) = dimH1(E(C),Q`) =

dimH1(E(C),Z)⊗Q` = dim(π1(E(C)ab)⊗Q` = 2

The final equality follows since π1(E(C))ab ∼= Z2 since E/C is a torus.

Next assume there is some field morphism σ : K → C (which is then an embedding). Then by
property (2), H1(EK ,Q`) ∼= H1(EC,Q`) which has dimension 2.

Next assume charK = 0 is an arbitrary field; then E/K : y2 = x3 + ax + b for a, b ∈ K. Write
K0 = Q(a, b); then E is defined over K0 and (again by property 2) H1(E0,Q`) = H1(E,Q`). But
K0 is embeddable into C regardless of whether a, b are algebraic or transcendental over C.

Finally, let charK = p; call it k in what follows, and call E Ẽ as well.. Assume k is finite with
characteristic 6= 2, 3 for simplicity. (In general, what follows can be done for any perfect k, and for
the general case, one can embed any field into its perfect closure). Thus k = Fq for q = pn. Let K
be the unique unramified extension of degree n of Qp with ring of integers A and maximal ideal m;
then A/m = Fq ∼= k. Then Ẽ/k : y2 = x3 + āx + b̄ for ā, b̄ ∈ k. Choose a, b ∈ K such that ā ∼= a

mod m, b̄ ∼= b mod m, and define E/K : y2 = x3 + ax + b. Then E has good reduction, and Ẽ is
its reduction. But then H1(E,Q`) = H1(Ẽ,Q`) by Grothendieck’s theorem and we are done by the
previous cases.

(This argument is useful in other settings as well: for example, the Cayley-Hamilton theorem may
be proved relatively easily over C; an argument similar to that above can be used to prove it for an
arbitrary field.)

(2): (Sketch) Define m : E × E → E to be multiplication; then

m∗ : H1(E,Q`)→ H1(E × E,Q`) = H1(E,Q`)⊗H0(E,Q`) +H0(E,Q`)⊗H1(E,Q`)

= H1(E,Q`) +H1(E,Q`)

is the diagonal map and f +g = m◦ (f, g). We can then prove equality again by starting over C.

Remark 47. All “interesting” Galois representations come from étale cohomology. We can’t get
all Galois representations in this way because there are only countably many varieties/schemes over
Q and, by a homework exercise, uncountably many Galois representations (even of dimension one).

3.2 Lefshetz Fixed Point Theorem from Differential Geometry

Let X be a compact, orientable manifold, f : X → X be C∞ and dimX = n.

Definition 48. A fixed point for f is x ∈ X such that f(x) = x. A fixed point for f is non-critical
if dfx − Id : TxX → TxX is invertible. In this case, define mx := sgn(det(dfx − Id)); this tells us
whether f preserves or reverses orientation near x.

Theorem 49 (Lefshetz Fixed Point or Trace Formula). Assume that f has only non-critical fixed
points. Then ∑

f(x)=x

mx =
n∑
i=0

(−1)itr(f∗(Hi(X,C)))

where the you can use your favourite topologically defined cohomology: de Rham, singular...
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Note that:

• The LHS is a geometric condition, while the RHS is a cohomological condition.

• The left hand side is a finite sum since non-critical fixed points are isolated and X is compact.
Not clear why
the LHS is a
finite sum: “if
an
accumulation
point, then in
fact dfx ∼ Id”

• There is a more general formula when f simply has isolated fixed points (critical or non).

• For a proof see Milnor’s Topology from a Differential Viewpoint.

Example 50. X = S2 and let f : X → X be homotopic to the identity. Then f has a fixed point.
Proof: if f has no fixed point then the left hand side, being an empty sum, is 0. So since f∗ = id∗,

0 =
2∑
i=0

(−1)i tr(id∗Hi(S2,C)) = χ(S2) = 2

a contradiction. A corollary is the hairy ball theorem: any vector field on S2 has a zero (because
you can integrate it, and the map obtained is homotopic to the identity).

Theorem 51 (Lefshetz-Grothendieck Fixed Point or Trace Formula, EGA4). X/K proper and
smooth and K algebraically closed (but this is not a real assumption since this is a geometric state-
ment) and f : X → X a K-morphism. Assume that all fixed points of f in X(K) are non-critical
(same definition as before, reinterpreted in the algebraic setting). Then

#fixed points of f =
2n∑
i=0

(−1)i tr(f∗(Hi(X,Q`)))

for ` 6= charK and the Hi is étale cohomology.

(We dropped the sign because varieties are all canonically oriented; the sign is 1 because it’s the
real determinant of a complex matrix, which is always positive.)

This is a very powerful theorem and is used in odd ways:

Example 52. Let X/Fq. Then we have a Frobenius map, F : X̄ → X̄ given (in affine charts) by
(a0, . . . , an) 7→ (aq0, . . . , a

q
n). Don’t worry, these glue together well. Then the fixed points of Fn on

X̄(F̄q) are X(Fqn). Also, F has only non-critical fixed points because F ∗ is zero on the tangent
space. Therefore

#X(Fqn) =
2n∑
i=0

(−1)i tr(Fn∗Hi(X,Q`))

Note the following subtlety: the above is the geometric Frobenius. There is also an arithmetic
Frobenius which is what we’ve talked about before: Frob ∈ Gal(F̄q/Fq). These are not the same; in
fact, they’re not even really comparable objects. However:

Lemma 53. The action of F ∗ on Hi(X̄,Q`) is the action of Frob−1 on Hi(X,Q`) and these two
Hi are equal as vector spaces.

3.3 The Weil Conjecture

Theorem 54 (Weil Conjecture, Deligne ’73). X/Fq proper and smooth. Then 1) the eigenvalues
of F ∗ acting on Hi(X,Q`) are algebraic numbers α such that for every embedding of Q̄ into C,
|α|C = qi/2 and 2) these eigenvalues are independent of `.
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Note:

• That the eigenvalues are algebraic is really saying something; a priori we only know that they’re
in Q`.

• Also, the fact that they’re independent of ` doesn’t even make sense without the fact that
they’re algebraic; elements of Q` and Qp aren’t comparable if ` 6= p. Independence can be
easily derived from statement 1).

• The history: Hasse proved this for elliptic curves, Weil proved this for curves of genus g and
made the general conjecture. Then Serre and Grothendieck worked on this, laying foundational
work. Then Deligne proved it for general varieties (or schemes i guess).

• The condition on α is pretty darn restrictive.

Corollary 55. Let X/Fq proper and smooth, geometrically connected, of dimension d. Then

#X(Fqn) = qnd +O(qnd−n/2)

Proof.

#X(Fqn) =
2d∑
i=0

(−1)i tr(Fn∗Hi) = tr(Fn∗H2d) +
2d−1∑
i=0

(−1)i tr(Fn∗Hi)

and by the Lefshetz Formula

tr(Fn∗H2d) = tr(Frob−nH2d = ω−d` (Frob−n) = ωd` (Frobn) = qnd

For the other part of the sum we have, from Deligne,

tr(Fn∗Hi) =
dimHi∑
j=1

αni,j so
∣∣tr(Fn∗Hi)

∣∣ ≤ (dimHi)qni/2

and the largest i is 2d− 1. Taking the sum we have what we want.

Example 56. What is the étale cohomology of Pd(Fq)?
Answer

#Pd(Fqn) =
qn(d+1) − 1
qn − 1

= qnd + qn(d−1) + · · ·+ qn + 1 =
2d∑
i=0

(−1)itr(Fn∗Hi) =
2d∑
i=0

(−1)i
dimHi∑
j=1

αni,j

This is partial, and will be completed as an exercise. But we’re basically done by the uniqueness of
representations of numbers in base q. So we get the (already known) result:

dimHi(Pd(Fqn)) =
{

1 i even
0 i odd

Let X/Fq be a proper and smooth variety. Then F ∗ : Hi(X̄,Q`)→ Hi(X̄,Q`) has eigenvalues αi,j
with j = 1, . . . ,dimHi that are algebraic numbers, independent of ` and |σ(αi,j)|C = qi/2 where σ
is any embedding of Q(αi,j) into C. It is not known that F ∗ is semisimple (this is a conjecture still)
ie, that we have the right number of eigenvalues; here we count the eigenvalues with multiplicities.

Corollary 57. (Deligne) Under the same hypotheses, the characteristic polynomial of F ∗ acting on
Hi(X̄,Q`) is in Z[x] and is independent of ` and has roots with |·| = qi/2.
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Proof omitted, (‘because it’s elementary’), but he urges us to read the first few pages of Deligne’s
paper: La Conjecture de Weil, IHES ’73. (see numdam.org) The argument uses the ζ function of a
variety over Q.

Conjecture 58. F ∗ is semisimple (diagonalizable over Q̄`) on Hi(X̄,Q`). (known for abelian
varieties and thus for elliptic curves.)

Now let X/K be proper and smooth variety over a number field. Notation: OK ring of integers. If
v is a place, Kv is the completion. If v < ∞, Ov ⊂ Kv. mv ⊂ Ov. and Fv := Ov/mv = Fqv where
qv = #Ov/mv.

Theorem 59. The representation Hi(X,Q`) of GK is unramified outside a finite set of places S of
K. If v is finite and not in S, then the characteristic polynomial of Frobv acting on Hi(X,Q`) is
in Q[x], is independent of ` and has roots of absolute value q−i/2v .

Proof. Since X is proper (projective) over K there exists a scheme X proper over SpecOK and

X×SpecOK SpecK = X

(X is projective if it sits inside PdK and X is defined by some equations P0, . . . , Pr = 0 with Pi ∈
K[x0, . . . , xd] and clearing denominators we can get Pi ∈ OK [x0, ..., xd]) We don’t say that this
‘model’ is unique – (there are many such models, but at least there is one. X is smooth over
SpecOK \ S where S is a finite set of points in SpecOK .

To see this, note that smoothness is an open property, so X is smooth over an open set SpecOK ,
and thus from the topology of SpecOK , it has a finite set of non-smoothness; we can remove these
by adding them to S.

Now let v be a prime of K not in S.

X⊗SpecOK SpecOv =: Xv proper and smooth over SpecOv (two points).

Recall: Hi(X × Kv,Q`) ∼= Hi(X × SpecFv,Q`) and you have compatible actions of Gal(K̄v/Kv)
on the left, and Gal(F̄v/Fv) on the right (and the kernel is Iv) and Frobv a lift of Frob in Gal(Fv)
(since Iv acts trivially).

Frobv acts on Hi(X ×Kv,Q`) = Hi(X,Q`) and Frob acts on Hi(X × SpecFv,Q`) as (F ∗)−1.

Conjecture 60. Hi(X,Q`) is absolutely semisimple as a representation of GK . (follows from Hodge
conjecture) (could be semisimple, but not semisimple over Q̄`)
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Definition 61. Let ρ be a representation of GK over L finite over Q`. We say that ρ is algebraic
over a number field L0 ⊂ L if: ρ is unramified almost everywhere and ρ(Frobv) has characteristic
polynomial in L0 for almost all v.

A q-Weil number of weight i, where q = pk, i ∈ Z, is an algebraic number α such that |σ(α)| = qi/2

for all σ : Q(α)→ C.

If ρ is a representation of GK that is algebraic over some number field, then we say that ρ is of
weight i if ρ(Frobv) has eigenvalues that are qv-Weil numbers of weight −i for almost all v.

Remark 62. • A priori there is no reason for a representation to have a weight.
• So the theorem just says that Hi(X,Q`) is algebraic over Q of weight i.

Example 63. ω`, the cyclotomic character. It is algebraic over Q, of weight −2. (four possible
conventions: could be 1,−1, 2,−2)

Definition 64. A representation ρ of GK over Q` is geometric if there exists a k ∈ Z, such that
ρ⊗ ωk` is a subquotient of some Hi(X,Q`) for some X proper and smooth variety over K.

The point of the rest of this class is to figure out when we can say a representation is geometric.
If we didn’t allow the ‘twist’ by ω` we could say that a necessary condition is positive weight, but
it’s much better to allow the twist so that we get a category which is stable under the operations of
taking duals and tensor products.

Cyclotomic character is not positive weight (so not ‘geometric’ with the näıve notion of geometric
(without the twist)): but it’s the dual of a (näıve) geometric: H2(P1,Q`) has GK acting by ω−1

` .

Exercise: dual and tensor product of geometric representations are geometric.

Theorem 65. E/K elliptic curve over number field. Then V`(E) is isomorphic to H1(E,Q`)⊗ ω`
and to the dual of first cohomology: H1(E,Q`)∗. (These two are isomorphic by Poincaré duality).

Proof. It is enough to prove that Frobv has the same trace on V`(E) as on H1(E,Q`)∗ for almost
all v. For almost all p, tr(Frobp|V`(E)) = #Ẽp(Fp) − 1 − p and tr(Frobp|H1(E)∗) = tr(F ∗|H1(E)) =
#Ẽp(Fp)− 1− p by Lefshetz fixed point thm.

Trivial representation is geometric: take a point and the H0 (or any connected variety).

So when are representations geometric?

Having a weight, being algebraic are necessary..but it’s not even a conjecture that it’s sufficient.
(There are some other notions of ‘algebraic’ that replace our simple notion. I think he said that
there’s some conjecture about that being sufficient.)

Here’s another condition: ‘being in a family’: should have other `-adic representations ‘related’ to
it (from other primes...)

Question: Suppose Hi(X,Q`) is reducible. Is Hi(X,Q`′) reducible? This is not known.
Motivic philosophy: Yes. Because there’s (ATC: here ‘is’ should be read as ‘should be’) an object
M i(X) in some crazy category of motives M so that we have X → M i(X)→ Hi(X,Q`) the latter
maps being ‘realization functors’ of which there should be one for each prime and moreover these
realization functors are fully faithful.

The things standing in the way of the theory of motives are the ‘hard Lefshetz conjecture’ and the
Hodge conjecture.
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4 Hecke Characters

As usual, we let K be a number field, v a place of K, Kv the completion, Ov the ring of integers
in Kv with (for v finite) maximal ideal mv and uniformizer πv; we denote by kv the residue field
Ov/mv. For v finite, if v | p, then |kv| = qv and qv = pr.

We also write AK = AK,f×AK,∞ and similarly A∗K = A∗K,f×A∗K,∞, where the subscript K, f means
the finite places and K,∞ the infinite places. Note that A∗K,∞ is a product of copies of R∗ and C∗;
as before we denote by A∗,0K,∞ the component of the neutral element in A∗K,∞; this is a product of
copies of R∗+ and C∗.

Class Field Theory tells us that
A∗K/K∗A

∗,0
K,∞

∼=−−→
Art

Gab
K

Definition 66. A Hecke character (or grössencharacter) of K is a continuous morphism χ : A∗K →
C∗ that is trivial on K∗.

Clearly an equivalent definition is that a Hecke character is a continuous morphism from A∗K/K∗ →
C∗.

If χ is a Hecke character and v a place of K, then χv = χ
∣∣
K∗v

is a character of K∗v ; we may ask what
such characters look like.

1. For v real, χv : R∗ → C∗, then

χv(x) = sgn(x)ε |x|c , c ∈ C, ε ∈ {0, 1}

and two such characters are distinct if they differ in either c or ε. Why? R∗ ∼= {±1} ×R∗+ via
x 7→ (sgnx, |x|). Maps {sgnx} → C∗ are clearly of the form sgn(x)ε; the second part follows
from

Lemma 67. A continuous morphism R∗+ → C∗ is of the form x 7→ xc for some c ∈ C.

Proof. Exercise. Follows from the fact that C∗ ∼= R∗+ × S1.

2. For v complex, χv : C∗ → C∗; in this case,

χv(z) = zn |z|c , n ∈ Z, c ∈ C

This follows since C∗ ∼= R∗+×S1 via z 7→
(
|z| , z|z|

)
; a character of R∗+ is of the form |z| 7→ |z|c,

and a character of S1 must have image in S1 since the image of S1 is a compact subgroup, so
it must be of the form z 7→ zn.

3. If v is a finite place, the form of χv : K∗v → C∗ is left as an exercise.

Definition 68. For v finite, χv is unramified if χv(O∗v) = 1, which is equivalent to χv = |·|c for
some c ∈ C.

These two definitions are equivalent since |·| ∼= R∗+; use the previous result.

Lemma 69. If χ : A∗K → C∗ is any character (not necessarily a Hecke character), then χv is
unramified for almost all v.
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Proof. χ|A∗f is continuous, and A∗f has a basis of neighborhoods of 1 consisting of subgroups of the
form

U =
∏
v

Uv, Uv ⊂ O∗v , Uv = O∗v for almost all v

(this follows directly from the topology on the idèles). But we know that C∗ has no arbitrarily small
subgroups, so choose a neighborhood V of 1 containing no nontrivial subgroup; then χ−1(1) contains
some U and thus χ is trivial on that U . But this means that χv is trivial on O∗v for almost all v.

It follows that the product
∏
v χv(xv) makes sense for x ∈ A∗K , so we recover χ(x) from the χv(xv).

So arbitrary continuous characters look like products of characters on the completions. The Hecke
property, however (i.e. triviality on K∗), is a global condition, and is arithmetically interesting.

Example 70. Characters of Artin type
Let ψ : GK → C∗ be a continuous character. This must factor through Gab

K , so we get a character

χ = ψ ◦Art : A∗K → Gab
K → C∗

χ is then trivial on K∗ since Gab
K
∼= A∗K/K∗A

∗,0
K,∞, so that χ is a Hecke character. χ is also trivial

on A∗,0K,∞. Such a Hecke character is said to be of Artin type.

Lemma 71. Let χ be a Hecke character. TFAE:

1. χ is of Artin type.

2. χ has finite image.

3. χv =

{
(sgnx)ε v real, ε ∈ {0, 1}
1 v complex

Proof. (1)⇒ (2) is obvious since if χ is of Artin type, it is an Artin representation and thus has finite
image. (2) ⇒ (3) is also clear, since χv has finite image for all v; from the form of representations
of R∗ above we see that c = 0; from the form of representations of C∗ we see that n, c = 0.

(3) ⇒ (1): Since χv is trivial on R∗+ and C∗, it is trivial on A∗,0K,∞, and trivial on K∗ since it is a
Hecke character, thus it is a character of Gab

K and is of Artin type.

Example 72. The Idelic Norm
We define a norm on A∗K by

|·| =
∏
v

|·|v

where |·|v is the normalized absolute value on K∗v :

• If K∗v = Q∗p, define |p|p = p−1.

• If Kv is a finite extension of Qp, define |·|v =
∣∣NK/Qp(·)

∣∣
p
.

• If Kv = R, define |·|R to be the usual real absolute value.

• If Kv = C, define |·|C =
∣∣NC/R(·)

∣∣
R, i.e. |x|C = xx̄. Note that this is not really an absolute

value, but that fact doesn’t matter and we will ignore it. It is, however, a character C∗ → C∗.

Note that |·| : A∗K → C∗ is trivial on K∗ by the product formula, so this is a Hecke character with
values in R∗+; more generally, for c ∈ C, |·|c is a Hecke character with values in C∗.
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Example 73. The Hecke character associated to an Elliptic curve
Let E/K be an elliptic curve with K an imaginary quadratic extension of Q, and assume E has
complex multiplication by K. Then the main theorem of complex multiplication (see Silverman’s
Advanced Topics) is

Theorem 74. There is a unique Hecke character χE : A∗K → C∗ such that

χE(πv) = FrobẼv ∈ K
∗ ⊂ C∗

for every finite place v at which E has good reduction (note that this is almost all v), and such that

χE(∞) : C∗ → C∗ : z 7→ z

The proof is difficult; a very brief outline is as follows. FrobẼv is an endomorphism of Ẽv commuting
with the action of K in Endkv (Ẽv)⊗Q, so lies in the centralizer of K. But K is its own centralizer,
so that Frob ∈ K∗.

4.1 Algebraic Hecke Characters

Definition 75. (A. Weil) A Hecke character is called algebraic if

χv(x) =

{
sgn(x)εv |x|nv , εv ∈ {0, 1}, nv ∈ Z v real
xav x̄bv , av, bv ∈ Z v complex

For example, a Hecke character of Artin type is algebraic since nv = 0, av, bv = 0 for all v. The
idelic norm is algebraic, and |·|c is algebraic if and only if c ∈ Z. Finally, χE is algebraic.

Note by the way that if v is real then K∗v
∼= R∗ canonically, while if v is complex, the isomorphism

is not canonical, and the characters χv associated with the conjugate embeddings are themselves
conjugate.

Theorem 76. If χ is algebraic, then there is w ∈ Z such that for every infinite place v,

w =

{
2nv v real
av + bv v complex

Thus all the nv are equal for all real places, and there is a strong relation among the nv, av, and bv.

The proof uses the following lemma:

Lemma 77. If χ is any character, then there is a subgroup Γ ⊂ O∗K of finite index such that for
x ∈ Γ, χf (xf ) = 1 (we write χf for χ|A∗f ).

Proof. We have O∗K ⊂
∏
v finiteO∗v ⊂ A∗f . As before, we know that χ |A∗f is trivial on some U =∏

v Uv ⊂
∏
v O∗v (where the product is over all finite places). But

∏
v O∗v is compact and U is open,

so U is of finite index. Let Γ = U∩O∗K ; this is then of finite index and χf (xf ) is trivial for x ∈ Γ.

Proof. (of theorem) It suffices to prove the result for elements of Γ, since the nv, av, bv depend only
on v, not on x ∈ A∗K . Now, since Γ ⊂ K∗, we have χ(Γ) = 1, and χf (xf ) = 1 by construction of Γ,
so that for x ∈ Γ,

1 = χ(x) = χf (xf ) ·
∏
v|∞

χv(xv) =
∏
v|∞

χv(xv) =
∏
v real

sgn(xv)εv |xv|nv ·
∏

v complex

xavv x̄
bv
v
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so that, taking logs,
0 =

∑
v real

nv log |xv|+
∑

v complex

(av + bv) log |xv|

for all x ∈ Γ.

Now, the Dirichlet Unit Theorem says that the log map

L : O∗K → Rr+s : x 7→ (log |xv|)v for v | ∞

has image L(O∗K) in the hyperplane
∑
v real yv + 2

∑
v complex yv = 0, so L(Γ) has image in that

hyperplane as well. Thus the form∑
v real

nv log |xv|+
∑

v complex

(av + bv) log |xv|

is trivial on ker(L|Γ), so that it must be proportional to∑
v real

log |xv|+ 2
∑

v complex

log |xv|

and the result follows.

Corollary 78. If K is totally real and χ is an algebraic Hecke character, then χ = α |·|n where α
is a Hecke character of Artin type, n ∈ Z, and |·| is the idelic norm.

Proof. All the nv are equal (to n). But then since K is totally real, there are no complex embeddings,
so by Lemma ??, χ |·|−n is Artin and we are done.

Comment in
class: Totally
real fields have
lots of units
(the maximum
rank, from
DUT, of an
extension of
given degree);
this
corresponds to
a small
number of
Hecke
characters.

Corollary 79. Let K be a number field and χ an algebraic Hecke character, w as in the theorem.
Then χχ̄ = |·|w.

Proof. Let n′v, a
′
v, b
′
v be associated to the character χχ̄. Clearly n′v = 2nv = w for v real, while for

v complex, a′v = b′v = av + bv = w. Then χχ̄ |·|−w is of Artin type and takes values in R∗+ since χχ̄
and |·| do. But values of an Artin character are roots of unity, so χχ̄ |·|−w = 1.

Theorem 80. Let χ be an algebraic Hecke character. Then there is a number field L ⊂ C with
χ(A∗K,f ) ⊂ L. (Note: this really means a number field L and an embedding L ⊂ C).

This is a pretty surprising result, since A∗K,f is a pretty big ring and there’s a priori no reason to
suppose that this would hold.

Proof. The idea of the proof is to note that K∗ is almost dense in A∗K,f and to compute the image
of an element of K∗ in A∗K,f , which is the inverse of the image of that element in A∗K,∞.

If U is any open compact subgroup of A∗K,f (i.e. a subgroup equal to O∗v for almost all finite v),
then since A∗K/A∗K,∞ = A∗K,f , we have

A∗K/K∗A∗K,∞U = A∗K,f/K∗U

Any such U has finite index in
∏
v O∗v , so this quotient is finite, say of order m.

Now if we choose U to be a subgroup of A∗K,f on which χf is trivial (as before, since C has no
arbitrarily small nontrivial subgroups), then for any x ∈ A∗K,f we may write

x = yrut, y ∈ K∗, r ∈ A∗K,∞, u ∈ U, t of finite order | m
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Then χ(y) = χ(u) = 1.

At the infinite places, χ∞(x) = 1, χ∞(r) = r, χ∞(u) = 1 (since x ∈ A∗K,f , r ∈ A∗K,∞, χ trivial on U ,
and χ∞(t) is again of finite order dividing m.

So if v is any infinite place, we have
rv = y−1

v tv

where rv ∈ C, y−1
v is in the normal closure of K (since any embedding of K is contained in its

normal closure), and tv is a root of unity in Q(ζm). Let L be the compositum of the normal closure
of K and Q(ζm). Thus rv ∈ L for infinite places L.

Finally, χ(x) = χ(r)χ(t) = χ∞(r)χ(t) ∈ L since χ∞(r) =
∏
v real±rnvv

∏
v complex r

av
v r̄

bv
v .

Now, if χ is a Hecke character of Artin type we have seen above that χ defines an Artin represen-
tation GK → C∗ (or Gab

K → C∗. Can we use other algebraic Hecke characters to define degree 1
representations of Gab

K ?

Theorem 81. Let χ be an algebraic Hecke character. Assume L ⊂ C is a number field containing
χ(A∗K,f ) and the normal closure of K. Let λ be a finite place of L with λ | ` for ` a rational prime.
Then there is a unique continuous χλ : GK → L∗λ unramified at every place v not dividing ` where
χ is unramified, and such that χλ(Frobv) ∈ L∗ and χλ(Frobv) = χ(πv).

Note that χ(πv) is in L by the way we have defined L together with the previous theorem, so that
it makes sense to compare χλ(Frobv) and χ(πv).

For dimension 1 representations, Frobv is the trace, and we have seen that the trace is an important
invariant of any representation.

Definition 82. χλ is called the λ-adic realization of χ.

Proof. (of theorem): Uniqueness is clear, since χλ is determined by its image on each of the Frobv’s. Why is χλ

determined as
stated?The idea of the existence proof is to transform χ to make trivial at the infinite places while keeping

it trivial on K∗. Recall that

χ∞(x) =
∏
v real

|xv|nv sgn(xv)εv
∏

v complex

xavv x̄v
bv

Define
τ∞ : A∗K,∞ → C∗ : x 7→

∏
v real

xnvv
∏

v complex

xavv x̄v
bv

Note that χ∞ = τ∞ on A∗,0K,∞.

We will now need the following lemma, which is proved after the proof of the theorem:

Lemma 83. In this situation, there is an algebraic Hecke character τλ : (K⊗Q`)∗ =
∏
v|`K

∗
v → L∗λ

such that for x ∈ K∗, we have τ∞(x) = τλ(x) ∈ L∗ (again note that the comparison makes sense
since τ∞(x) is in the normal closure of K, which is contained in L.

Assuming the lemma, note that χτ−1
∞ is trivial on A∗,0K,∞ and takes values in L; then χτ−1

∞ τλ : A∗K →
L∗λ is trivial both on K∗ (since χ is and since by the lemma τ−1

∞ τλ is) and on A∗,0K,∞ (since τλ is), so
that

χλ = (χτ−1
∞ τλ) ◦Art−1 : Gab

K → L∗λ

But χλ(πv) = χ(πv) for v - `, and the Artin map takes Frobv 7→ πv. Finally, χλ = χ for finite places
not dividing `.
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Proof. (of lemma): We have the following diagram:

C
∪

K
σ //

σ
;;wwwwwww

σλ ##FFFFFFF L

∩
Lλ

For x ∈ K∗, claim
τ∞(x) =

∏
σ∈Hom(K,C)

σ(x)nσ , nσ ∈ Z

For real embeddings, this is clear. Complex embeddings come in conjugate pairs; for these, if
σ(x) = xv, define nσ = av, nσ̄ = bv.

We then define
τλ : (K ⊗Q`)∗ → L∗λ

by τλ =
∏
σ∈Hom(K,C) σ

nσ
λ (note that σλ defines a morphism from K ⊗Q` since Lλ is a Q`-algebra).

Then for x ∈ K∗, we have τλ(x) = τ∞(x) since for x ∈ K∗, σλ(x) = σ(x). What exactly is
the action of τλ
on x?Corollary 84. χλ is of weight −w.

Proof. Start with χχ̄ = |·|w. Then

χλ(Frobv)χλ(Frobv) = χ(πv)χ(πv) = |πv|w = q−wv

The proof of the theorem also shows that if v - ` is a finite place of K then χλ|Dv ◦Artv = χv, even
if χ is ramified. Note first that if v - ` then χ is unramified at v if and only if χλ is unramified at
v. If χ is unramified at v, then χv is trivial on O∗v , which maps surjectively to inertia, so that χλ is
unramified at v. Now, χλ|Dv (Iv) = χλ(Iv) is finite since χ on A∗K,f is trivial on some finite index
subgroup U of

∏
v finiteO∗v so that χv is trivial on a finite index subgroup of O∗v . This proof

makes no sense
to me and may
be completely
wrong.

Definition 85. A character η : K∗v → L∗λ is locally algebraic if η(x) =
∏
σ∈Hom(Kv,Lλ) σ(x)nσ for

some nσ ∈ Z for every x in some open subgroup of O∗v . Note that this definition has content only in
the case where v | `, λ | `. A character η̃ : Dv → L∗λ is locally algebraic if η̃ ◦Artv is locally algebraic.

Corollary 86. If v | `, χλ|Dv is locally algebraic.

Proof. From the theorem, we have χλ ◦ ArtK = χτ−1
∞ τλ, and τλ is nontrivial on places dividing `.

Now, on K∗v , v | ` τ−1
∞ is trivial, and χ is trivial on some finite index subgroup of O∗v . Additionally,

τλ(x) is of the required form since it is an algebraic Hecke character.

Theorem 87. Let K be a number field, L an `-adic field, and τ : GK → L∗ a continuous character
of GK . Assume τ is locally algebraic at all places v | `. Then up to finite extensions of L, τ is the
λ-adic realization of an algebraic Hecke character.

This means that the only condition for an `-adic character to be a realization is that it be locally
algebraic.

Proof. This is the same as the proofs of Theorems ?? and ??. In the proof of Theorem ??, since τ
is locally algebraic, you can split it up into τ∞ and τλ and run the argument backwards. Then show
that im(Frobv) is in a number field.
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Theorem 88. If τ : GK → L∗ is as in the previous theorem, then the following are equivalent:

1. τ is geometric

2. τ is locally algebraic at all v | `

3. τ is the λ-adic realizaion of an algebraic Hecke character

Note that we only define geometric characters over Q`, but a vector space over L is also a vector
space over Q`.

Proof. (3) ⇒ (2) is Theorem ??.
(2) ⇒ (3) is Theorem ??.
(3) ⇒ (1) is in the Exercises.
(1) ⇒ (2) is Fontaine theory, which we will cover later, and is due primarily to Faltings.

Example 89. Let |·| be the idelic norm. In this case |·|λ = ω−1
` since their images on Frobv are the

same. Note that ω−1
` : GK → Q∗` while |·|λ : GK → L∗λ. However in this case we can take L = Q for

the Hecke character (that is, the image of |·|λ actually lies in Q∗` ).

Example 90. Let E/K be an elliptic curve for K a quadratic imaginary field, and assume that E
has CM by OK . Then CM theory shows that there is a map E 7→ χE where χE is an algebraic Hecke
character, and χE(πv) = Frobv ∈ K∗ ⊂ C∗; this is the geometric Frobenius. Again in this case we
can take L = K. If λ is a place of L, then χλE : GK → L∗λ = K∗λ. Then V`(E) is a GK-module of
dimension 2, so V`(E) is acted on by OK where the action is given by CM (this is because V`(E) is
the limit of `n-torsion). But V`(E) is a Q`-vector space, so it is acted on by OK ⊗Z Q` = K ⊗Q Q`,
and the action of GK commutes with this K ⊗Q Q` structure since the isogeny is defined over K.

If ` is inert in K, then K ⊗Q Q` = K` is a field, V`(E) has degree 1 over K`, and GK ↪→ V`(E) is a
character GK → K`; this is χ`E .

If ` splits in K = L, say ` = λλ̄, then K ⊗Q Q` = LλLλ̄
∼= Q` ⊗Q Q`. Then V`(E) splits as a GK

module as V`(E) = Vλ(E) ⊕ Vλ̄(E); these are both of dimension 1 and GK acts on each. (To see
this, take the nilpotents in K ⊗ Q`; these commute with the GK action.) We thus get a character
GK → L∗λ; this is χλE .
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5 Galois Representations of Local Fields, p-adic case - Fontaine
Theory

We now consider the case where p = ` (the so-called p-adic theory). Thus assume that both K and
L are finite extensions of Qp, and that ρ : GK → GLn(L) is a continuous representation.

Note that the critical observation in the proof of the monodromy theorem was that im ρ was finite
since a map from a p-adic to an `-adic group was trivial for p 6= `. This step obviously fails here,
and in fact the result is false - not every representation is semi-stable. But it turns out that the
semi-stable representations are the geometric representations (for a somewhat different definition of
semi-stable), and thus these are still the interesting objects of study.

5.1 Overview

The condition that ρ be unramified is very strong in this case. For p 6= `, it was somewhat weaker
since we already knew that wild inertia was trivial. For p = `, that is not the case. So it turns out
that unramified is too strong a condition. For example, look at ω` : GK → Q∗` . If K is `-adic, recall
that ω` : O∗K → Q∗l : x 7→ x−1, so that ω` is ramified since inertia is not trivial.

A property called crystalline takes the place of unramified. It is much weaker than unramified, but
has the right degree of generality for the p-adic theory. In addition, we get a notion of potentially
crystalline, similar to potentially unramified.

A notion of semi-stability exists as well, although the definition is different than in the `-adic case.

The following set of implications is easy to see once the definitions are made; this is similar to the
picture in the `-adic case:

ρ unramified

��
ρ crystalline

px hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

%-TTTTTTTTTTTTTTT

TTTTTTTTTTTTTTT

ρ potentially crystalline

&.VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVV
ρ semi-stable

qy jjjjjjjjjjjjjjj

jjjjjjjjjjjjjjj

ρ potentially semi-stable

��
ρ deRham

��
ρ Hodge-Tate

��
ρ arbitrary

Two long-standing conjectures of Fontaine, since proved, are:

Conjecture 91. (proved by Berger): ρ is deRham if and only if ρ is potentially semi-stable.
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This is the p-adic analogue of Grothendieck’s monodromy theorem.

Conjecture 92. (proved by Faltings)

• If X is a proper and smooth variety over K, then Hi(X,Qp) with its GK action is deRham.

• If X has good reduction, then Hi(X,Qp) is crystalline.

Note that in the `-adic theory, if X has good reduction, then Hi(X,Q`) is unramified. This argument
does not work here, but we do get crystalline instead.

It follows that deRham representations are the ones that come from geometry. There are repre-
sentations that are not deRham (unlike the analogous case in the `-adic theory), but those are less
interesting.

One approach to analyzing these representations might be to try to analyze the wild inertia. It turns
out that this is just too complicated. Instead, Fontaine defined rings B∗ that are also Qp-algebras
with Galois actions such that if dim(B∗⊗V )GK = dimV (here GK means the GK-invariant subspace),
then V has the ∗ property, for ∗ in {crystalline, semi-stable, deRham, Hodge-Tate} (thus there are
four different rings, Bcrys, Bss, BdeRham, BH-T).

5.2 Fontaine’s formalism

Let F be any field, G a group, and denote by RepF (G) the category of finite-dimensional represen-
tations of G over F .

Definition 93. A (F,G)-regular ring B is an F -algebra B (i.e. a ring containing F ) that is a
commutative domain with unity, together with a G-action preserving the F -algebra structure (i.e.
such that the G-action is trivial on F ), such that

• BG = Frac(B)G, where ·G means the elements invariant under the G-action. Note that ⊂
always holds. Here the G-action on Frac(B) is the quotient of the actions on the numerator
and denominator.

• For all 0 6= b ∈ B, if Fb is G-stable, then b ∈ B∗.

If B is (F,G)-regular, we will write E = BG = Frac(B)G. E is a field since Frac(B) is, and E ⊃ F
since BG ⊃ F . It may or may not be finite over F . Thus B is an E-algebra as well as a F -algebra.

Note that if B is a field, then the conditions in the definition always hold. Many of the B we will
consider are in fact fields, although Bcrys is not.

Fix a (F,G)-regular ring B. For V ∈ RepF (G) set DB(V ) = (V ⊗F B)G (here the action of G on
V ⊗F B is given by g(v ⊗ b) = gv ⊗ gb, in contrast to the situation where B is simply an extension
of F and the tensor product is extension of scalars). If B has a rich enough G-action, we can use
the tensor product to detect properties of V .

Lemma 94. DB is a left-exact functor from RepF (G) to VecE (the category of E-vector spaces).

Proof. Since BG = E, it is clear that DB(V ) can be multiplied by elements of E and that the result
is still G-invariant. Thus DB(V ) is an E-vector space. DB is functorial since if V → V ′ is a map of
representations, then V ⊗F B → V ′ ⊗F B is compatible with the G-action. Finally, to see that the
functor is left exact, if

0→ V1 → V2 → V3 → 0
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is an exact sequence in RepF (G), then since F is a field,

0→ V1 ⊗F B → V2 ⊗F B → V3 ⊗F B → 0

is exact as well. Now consider

0→ (V1 ⊗F B)G → (V2 ⊗F B)G → (V3 ⊗F B)G

and exactness is clear.

We now define αV : B ⊗E DB(V )→ B ⊗F V by

B ⊗E DB(V ) ↪→ B ⊗E (B ⊗F V )
∼=−→ (B ⊗E B)⊗F V

x⊗y 7→xy−−−−−−→ B ⊗F V

Note that αV is B-linear.

Proposition 95. αV is compatible with the G-action, where the G-action on B ⊗E DB(V ) is just
the action on B (since G acts trivially on DB(V )).

Proof.

αV (g(b1 ⊗
∑

bα ⊗ vα) = αV (g(b1)⊗
∑

bα ⊗ vα) = αV (g(b1)⊗
∑

g(bα)⊗ g(vα))

=
∑

g(b1)g(bα)⊗ g(vα) =
∑

g(b1bα)⊗ g(vα) = g(b1
∑

bα ⊗ vα)

= g(αV (b1 ⊗
∑

bα ⊗ vα))

Proposition 96. αV is an injection, and dimE DB(V ) ≤ dimF V (in particular, this shows that
dimE DB(V ) is finite). Moreover, if equality holds, then αV is an isomorphism of B-modules.

Definition 97. A representation V is B-admissible if dimE DB(V ) = dimF V .

Proof. First assume that B is a field, and let (eα)α∈I be an E-basis for DB(V ). Then since B is a
vector space over E, we have also that (1 ⊗E eα) is a basis of B ⊗E DB(V ) over B6. We want to
show that αV sends this basis to a linearly independent set over B; then αV is injective and thus
dimB B ⊗F V ≤ dimF V .

Now, αV (1 ⊗ eα) = eα (just follow the definition; only the multiplication map in αV actually does
anything, and here it multiplies by 1). So assume that we have bα ∈ B with

∑
bααV (1 ⊗ eα) =∑

bαeα = 0 with the bα not all zero, and almost all bα = 0. Assume further that we have chosen
such a relation with the minimal number of nonzero bα. Finally, we may assume wlog that b1 = 1
(where 1 ∈ I is some index). Choose g ∈ G. Then

g
(∑

bαeα

)
=
∑

g(bα)g(eα) =
∑

g(bα)eα = e1 +
∑
α∈I
α 6=1

g(bα)eα = 0

since the eα are G-invariant. Subtract the two relations to see that∑
α∈I
α 6=1

(bα − g(bα))eα = 0

6 This is extension of scalars for free modules: if R ⊂ S then S ⊗R R ∼= S, and tensor product distributes over
direct sums, so S ⊗R Rn ∼= Sn
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But this relation has fewer nonzero elements, so in fact they are all zero and bα = g(bα) for all g ∈ G.
Thus bα ∈ BG = E. But then the bα were all zero to start with, since the eα form an E-basis.

If the dimensions are equal, then the two sides have the same B-dimension, so are isomorphic.

In the general case, where B is not necessarily a field, write C = Frac(B). Then we have a diagram

αV : B ⊗E DB(V )� _

��

// B ⊗F V� _

��
αCV : C ⊗E DV (C) // C ⊗F V

since E = BG = CG, and αCV is injective so that αV is as well. Now, both B⊗EDB(V ) and B⊗F V
are free B-modules (extension of scalars again), so αV being injective implies a ≤ relationship
between their ranks.

If the dimensions are equal, then αV is an injective map of free B-modules of the same rank. That
does not necessarily make it an isomorphism, but consider det(αV ) ∈ B − {0} defined by choosing
bases. This is well-defined up to an element of B∗, and if det(αV ) ∈ B∗, then αV is an isomorphism.
Now, F det(αV ) is G-stable since αV is compatible with the G-action, so that det(αV ) is invertible Not clear, some

calculation was
involved here?

and thus in B∗.

Remark 98. If V is B-admissible, then V ⊗F B ∼= B⊗EDB(V ) ∼= B⊗EEn ∼= Bn as B[G]-modules
(isomorphism as B-modules is clear, and all the isomorphisms are compatible with the G-action [in
particular, the first one, αV , is]). The converse is also true: if V ⊗F B ∼= Bn as B[G]-modules, then
V is B-admissible since we always have Bn ∼= B ⊗E DB(V ). Thus a representation is B-admissible
if its tensor product with B is a sum of trivial representations.

Definition 99. We write RepBFG for the full subcategory of RepFG of B-admissible representations
(full here means that we keep all the morphisms from the original category).

Note that the definitions of DB(V ) and of B-admissibility depend only on the F [G] action on B, not
on the multiplicative structure of B. The multiplication on B was used to define αV and to prove the
proposition about the dimensions of DB(V ) and V . In the case where B is a field, both B⊗EDB(V )
and B⊗F V are B-vector spaces with a G-action, so they are representations. However, they are not
linear since G acts nontrivially on B: if w ∈ B ⊗F V and b ∈ B, we have g(bw) = g(b)g(w) 6= bg(w)
in general.

Definition 100. Let G be a group, B be a commutative ring with a G-action. A semi-linear
representation of B over B is a free finite rank B-module W with a morphism ρ : G → Aut+(W )
(the automorphisms of W as an additive group), not necessarily linear, such that

ρ(g)(bw) = g(b)ρ(g)(w)

Note that if the action of G on B is trivial, this is a linear representation.

If B is a field, a semi-linear representation W is a B-vector space and an additive group with
G-action.

Definition 101. Let (ρ1,W1), (ρ2,W2) be two semi-linear representations. A morphism f : W1 →
W2 is a morphism of semi-linear representations if f is B-linear and f(ρ1(gw)) = ρ2(g)f(w) for all
g ∈ G,w ∈W1.

With these definitions, the set of semi-linear representations of G over B forms a category.

34



The trivial semi-linear representation of dimension n is Bn, with

ρ(g)(b1, . . . , bn) = (gb1, . . . , gbn)

Clearly B ⊗F V is a semi-linear representation of dimension dimF V since V is an F -vector space
and the G-action is defined appropriately. B ⊗E DB(V ) is clearly a free B-module with a G-action
and is also semi-linear:

ρ(g)(b1(b⊗ v)) = g(b1b)⊗ g(v) = g(b1b)⊗ v = g(b1)(gb⊗ v) = g(b1)ρ(g)(b⊗ v)

since the G-action on DB(V ) is trivial. Again since the G-action is trivial, B⊗EDB(V ) is the trivial
representation.

Now, αV is clearly a morphism of semi-linear representations, and V is B-admissible if and only if
αV is an isomorphism of semi-linear representations if and only if B ⊗F V is the trivial semi-linear
representation. This is a restatement, in the language of semi-linear representations, of Remark ??.

Proposition 102.

1. If V is B-admissible, then any subrepresentation of V and any quotient of V are also B-
admissible.

2. If V1, V2 are B-admissible, then V1 ⊗F V2 is B-admissible, and

DB(V1 ⊗F V2) = DB(V1)⊗E DB(V2)

3. If V is B-admissible, then so is V ⊗n.

4. If V is B-admissible, then so are ΩnV and ΛnV , and DB(ΛkV ) = ΛkDB(V ). and
DB(ΩkV ) =
ΩkDB(V )?5. If V is B-admissible, so is V ∗.

Proof.

1. Suppose V is B-admissible and that

0→ V1 → V → V2 → 0

is exact in RepFG; then
0→ DB(V1)→ DB(V )→ DB(V2)

is also exact, so that dimE DB(V ) ≤ dimE DB(V1) + dimE DB(V2). But dimE DB(V ) =
dimF V , so that

dimF V = dimE DB(V ) ≤ dimE DB(V1) + dimE DB(V2) ≤ dimF V1 + dimF V2

But equality holds here, so that dimE DB(Vi) ≤ dimF Vi implies that both Vi are B-admissible.

2. Suppose that dimF V1 = m,dimF V2 = n. Then as B[G]-modules, V1 ⊗F B ∼= Bm, V2 ⊗F B ∼=
Bn. Thus

(V1 ⊗F V2)⊗F B ∼= V1 ⊗F Bn = (V1 ⊗F B)n ∼= Bmn

as B[G]-modules, so that V1⊗F V2 is B-admissible. This proves the first part of the statement.

3. This follows directly from the previous item.
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The statements
about Λk follow
directly from
(3) since ΛkV is
a quotient of
V ⊗n?

4.

5. ???

Theorem 103. Assume that B1, B2 are (F,G)-regular, and f : B1 → B2 is an injective morphism
of F -algebras compatible with the action of G such that f induces an isomorphism BG1 → BG2 . Then
if V is B1-admissible, it is B2-admissible.

Proof. Since BGi is a field, V ⊗BGi · is exact, so that f∗ : V ⊗ B1 → V ⊗ B2 is injective if f is
injective (note that we used here the fact that BG1 = BG2 ). Since f is compatible with the G-action,
it carries (V ⊗ B1)G into (V ⊗ B2)G; this map, too is injective if f is. Recall that we also have
always dimBG DB(V ) ≤ dimF V . Then since f and thus f∗ are injective, we have

dimF V = dimBG1
DB1(V ) = dimBG2

f∗(DB1(V )) ≤ dimBG2
DB2(V ) ≤ dimF V

so that equality holds.

Theorem 104. Let F be a field of uncountable cardinality and I a countable index set. Assume
that B is (F,G)-regular and B is the union of sub-F -algebras Bi for i ∈ I such that BG = BGi for
all i. Then if V is a representation of G over F , V is B-admissible if and only if V is Bi-admissible
for some i ∈ I.

Proof. ⇐ follows directly from Theorem ??. For ⇒, note that

DB(V ) = (V ⊗B)G =
⋃
i∈I

(V ⊗Bi)G =
⋃
i∈I

DBi(V )

Then DB(V ) is the denumerable union of vector spaces giving a vector space over a nondenumerable
field, so dimDB(V ) = dimDBi(V ) for some i ∈ I and thus V is Bi-admissible.

5.3 Fontaine Rings

5.3.1 Introduction

We will apply this theory for F = Qp. Note that representations over L a finite extension of Qp are
also representations over Qp; it turns out that the information we lose in restricting our attention
to Qp is not important for the theory.

Thus let F = Qp, G = GK for K a p-adic field (i.e. [K : Qp] <∞).

Example 105. Let B = K ′ where K ′/K is a finite Galois extension. Then GK acts on K ′ through
the quotient Gal(K ′/K). B is a field, so is (Qp, GK)-regular, and E = BG = K. We have

Proposition 106. Let (ρ, V ) be a representation of GK on Qp. Then (ρ, V ) is K ′-admissible if and
only if ρ is trivial on GK′ if and only if ρ factors through Gal(K ′/K).

Proof. The second if and only if is obvious. For the first, recall that if Γ = Gal(K ′/K), the normal
basis theorem says that K ′ ∼= K[Γ] as vector spaces over K, and from the exact sequence

1→ GK′ → GK → Gal(K ′/K) = Γ→ 1
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it follows that GK acts on Γ by permuting its elements, so that K ′ ∼= K[Γ] as GK-representations.
We thus have the following isomorphisms of GK-representations:

(V ⊗K ′)GK ∼= (V ⊗K[Γ])GK = HomGK (K[Γ]∗, V ) = HomGK (K[Γ], V )

(the equality with HomGK is a standard result from group cohomology, see e.g. Serre Local Fields).

But K[Γ] is the regular representation of Γ, so is the sum of all irreducible representations of Γ. If
V is one of those, then the formula above reduces to dimV ; otherwise, it is 0. Finally, (ρ, V ) is
K ′-admissible if and only if dimDK′(V ) = dimV if and only if dim(V ⊗K ′)GK = dimV if and only
if V is a representation of Gal(K ′/K).

Example 107. Let B = K̄; then BGK = K = E.

Proposition 108. (ρ, V ) is K̄-admissible if and only if ρ has finite image.

Proof. There are a denumerable number of finite extensions of K contained in K̄, and K̄ is the
union of these. Further, K̄GK = K ′GK = K by Theorem ??, so by Theorem ??, V is K̄-admissible if
and only if V is K ′-admissible for some K ′ finite over K if and only if (by Proposition ??) ρ factors
through Gal(K ′/K) for some K ′ finite over K if and only if ρ has finite image.

Thus the set of admissible representations for B as large as Q̄p is still too small – only representations
with finite image are admissible. In order to get more admissible representations, we need to consider
a larger ring than Q̄p, which will be its completion Cp.

5.3.2 Nonabelian Group Cohomology

Let G,A be groups (in the usual setting, A is an abelian group; we will not make that assumption.
This will reduce the amount of information we can get from the cohomology). Assume A has a
G-action; that is, a map G × A → A such that for all g, g′ ∈ G, a, a′ ∈ A, the following conditions
hold: (gg′)a = g(g′a), ea = a, g(aa′) = (ga)(ga′), ge = e. In other words, a G-action is a morphism
η : G→ Aut(A). (Such a morphism defines an action via ga = η(g)(a)).

Definition 109. H0(G,A) = AG = {a ∈ A | ga = a ∀ g ∈ G}. This is obviously a subgroup of A.

Definition 110. A crossed homomorphism from G to A is a map G→ A : g 7→ ag such that for all
s, t ∈ G, ast = as · s(at).

Remark 111. If the action of G on A is trivial (i.e. ga = a for all g ∈ G, a ∈ A), then a crossed
homomorphism is simply a homomorphism of groups.

Definition 112. Let (as), (a′s) be two crossed homomorphisms from G to A. We say that (as) and
(a′s) are cohomologous (written (as) ∼ (a′s)) if there is some a ∈ A such that

∀ s ∈ G, a′s = a−1ass(a)

It is easy to see that ∼ is in fact an equivalence relation. Note also that if (as) is a crossed
homomorphism and a ∈ A, then a′s = a−1ass(a) is also a crossed homomorphism:

a′ss(a
′
t) = a−1ass(a)s(a−1att(a)) = a−1ass(at)(st)(a) = a−1ast(st)(a) = a′st

Definition 113. H1(G,A) is the pointed set of equivalence classes of crossed homomorphisms from
G to A modulo ∼. The distinguished point in H1(G,A) is the equivalence class of the crossed
homomorphism ag = e for each g ∈ G.
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Definition 114. If f : (X,x)→ (Y, y) is a morphism of pointed sets, then ker f = f−1(y).

Note that in the category of pointed sets, injectivity is definitely not the same as having trivial
kernel. Both ker f and im f are pointed sets.

Theorem 115. Let 0 → A → B
p−→ C → 0 be an exact sequence in the category of groups with

G-action (i.e. the maps are compatible with the G-action). Then there is a long exact sequence in
cohomology

0→ H0(G,A)→ H0(G,B)→ H0(G,C) δ−→ H1(G,A)→ H1(G,B)→ H1(G,C)

Proof. δ is defined as follows. Choose c ∈ CG. Since p is surjective, there is b ∈ B such that pb = c.
Define a crossed homomorphism from G to A by defining as = b−1s(b) for g ∈ G. Note that this
crossed homomorphism in fact lands in A, not in B, since

p(as) = p(b−1)p(s(b)) = p(b)−1s(p(b)) = c−1s(c) = c−1c = e

since c ∈ CG. s 7→ as is a crossed homomorphism since

ass(at) = b−1s(b)s(b−1t(b)) = b−1(st)(b) = ast

and thus this defines an element of H1(G,A); this is δ(c).

We made a choice in the definition; namely, the choice of b ∈ p−1c. Suppose we had chosen a
different b, i.e. an element ba ∈ B for a ∈ A (this is the range of choices since we have an exact
sequence of groups; further, since A is normal in B, we need not also worry about ab). Then we get

a′s = (ba)−1s(ba) = a−1b−1s(b)s(a) = a−1ass(a)

and a, a′ are cohomologous.

Exactness is either obvious or a diagram trace.

Theorem 116. (Hilbert’s Theorem 90) Let K ′/K be an algebraic Galois extension of fields. Then
Gal(K ′/K) acts on Mn(K ′) coefficient by coefficient, and we have

1. H1(Gal(K ′/K), GLn(K ′)) is trivial

2. H1(Gal(K ′/K),Mn(K ′)) is trivial where Mn(K ′) is regarded as an additive group (this is
the additive version of Theorem 90). In fact, since Mn(K ′) is abelian, we can define higher
cohomology groups, and Hi(Gal(K ′/K),Mn(K ′)) is trivial for i ≥ 1

3. For n = 1, Hi(Gal(K ′/K),K ′∗) is nontrivial for i > 1.

Proof. (Sketch of 1 and 2)
(2): Mn(K ′) is an induced module.
(1): Assume for simplicity that K ′/K is finite, and let (as) be a crossed homomorphism from
G = Gal(K ′/K) to GLn(K ′). For c ∈Mn(K ′), define

b =
∑
s′∈G

as′s
′(c)

Then for s ∈ G, we have

s(b) =
∑
s′∈G

s(as′)ss′(c) =
∑
s′∈G

a−1
s ass′ss

′(c) = a−1
s

∑
s′∈G

as′s
′(c) = a−1

s b

Thus s(b) = a−1
s b. If in fact b ∈ GLn(K ′), we are done, for as = bs(b)−1 so that as ∼ e. But you

can always choose c so that b is in GLn(K ′) by linear independence of homomorphism. I assume this is
an analog of
linear
independence of
characters.

38



Remark 117. If G,A are topological groups and G×A→ A is a continuous action, then H1
cont(G,A)

can be defined using continuous crossed homomorphisms, and the equivalence classes are closed.

There is a close relation between group cohomology and semi-linear representations. Let G be a
group and B a ring with G-action. We can associate to each dimension n semi-linear representation
V of G over B an element in H1(G,GLn(B)) as follows. Let B be a basis of V . For s ∈ G, we may
consider sB; this is still a basis. Thus

sB = a−1
s B, as ∈ GLn(B)

and
a−1
st B = st(B) = s(a−1

t B) = s(a−1
t )sB = s(a−1

t )a−1
s B

using in the next-to-last step the fact that the representation is semi-linear. Thus ast = ass(at)
so that as is a crossed homomorphism from G to GLn(B); we map V to the class of (as) in
H1(G,GLn(B)). If we had picked a different basis aB, a ∈ GLn(B), then s(aB) = a−1

s sB and
we would get a cohomologous crossed homomorphism a−1ass(a). We thus get a morphism from
B-semi-linear representations of dimension n modulo isomorphism to H1(G,GLn(B)).

Theorem 118. This map is a bijection of pointed sets, where the distinguished point in the set of
representations is the trivial semi-linear representation.

Proof. (Sketch) Bijection is “easy”. To see that the trivial representation maps to the distinguished
element of cohomology, choose a basis invariant under the G-action.

Note that if the G-action on B is trivial, then we are in fact talking about linear representations,
and this theorem becomes the well-known fact that B-linear representations of G of dimension n,
modulo isomorphism, are the same as maps G→ GLn(B).

Corollary 119. Let K be an algebraic extension of Qp, let B be a (Qp, GK)-regular ring, and L/K
a Galois extension. Assume that H1(Gal(L/K), GLn(BGL)) = 0, and let (ρ, V ) be a representation
of GK . Then if V |GL is B-admissible, so is V .

Proof. Saying that V |GL is B-admissible means that W = (V ⊗Qp B)GL has dimension n over
A = BGL . W has a natural GK action in which GL acts trivially; this induces an action of
Gal(L/K) on W . This action is A-semi-linear since the GK action is. By the theorem, since the
cohomology vanishes, we see that W = An as A-modules with semi-linear Gal(L/K)-modules. But
then as A-modules,

DB(V ) = (V ⊗Qp B)GK = ((V⊗Qp)GL)Gal(L/K) = (An)Gal(L/K) = (BGK )n

and thus V is B-admissible.

5.3.3 Representations over Cp and Sen Theory

Q̄p is algebraically closed, and has a unique absolute value extending |·|p since every element of Q̄p

is in some finite extension and there is a unique absolute value in that extension extending |·|p.
However,

Proposition 120. Q̄p is not complete.
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Proof. Let Kn be the compositum of all extensions of Qp of degree ≤ n. Then

Qp = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · ·

and Q̄p = ∪Ki. Since there are only a finite number of extensions of Qp of a given degree, we have
[Kn : Qp] <∞. Since Kn is finite dimensional, it is closed in Q̄p with empty interior. By the Baire
category theorem, Q̄p cannot be complete.

Definition 121. Cp is the completion of Q̄p for |·|p.

Proposition 122. Cp is algebraically closed.

Proof. Recall that a version of Krasner’s lemma (actually a corollary) says the following: Let K be
a field complete with respect to a nontrivial nonarchimedean absolute value, P (x) ∈ K[x] a monic
irreducible polynomial, α a root of P (x) in some algebraic closure K̄ of K. If Q(x) ∈ K[x] is a
monic polynomial of the same degree as P (x) that is “sufficiently close” to P (x), then there is a
root β of Q(x) in K̄ such that K(α) = K(β).

So let α be algebraic over Cp and P (x) its monic irreducible polynomial in Cp[x]. Since Q̄p is dense
in Cp, we may choose Q(x) ∈ Q̄p[x] arbitrarily close to P (x). Then there is a root β ∈ Cp such that
Cp(α) = Cp(β) = C so that α ∈ Cp.

If K/Qp is a finite extension, then GK acts on K̄ = Q̄p continuously (if x ∈ K̄, then x, σ(x) are
in some finite extension of K, so their absolute values are the same since they depend only on the
norm of x). Thus it also acts on Cp. This makes Cp into a (Qp, GK)-regular ring, and we would like
to know what CGKp is.

Theorem 123. (Tate) Let K be any algebraic extension of Qp, K̂ the topological closure of K in
Cp.7 Then CGKp = K̂. In particular, if K/Qp is finite, then K is closed so that CGKp = K.

We will not prove this theorem. But clearly if K is any subfield of Q̄p, CGKp ⊃ K. But CGKp is
closed; one can use this to show that it is equal to the topological closure of K in Cp by looking at
elements approximately fixed by GK and show those elements are almost in K.

This theorem says among other things that all elements on which GK acts trivially are algebraic,
something that is not a priori obvious.

Theorem 124. (Sen, Serre-Tate) Let K be a finite extension of Qp, (ρ, V ) a p-adic representation
of GK . Then (ρ, V ) is Cp-admissible if and only if ρ(IK) is finite.

This theorem too is somewhat surprising, as it says that the admissible representations of the
transcendental extension Cp are characterized by a purely algebraic condition. However, it shows
that even Cp is not large enough.

The proof of Sen’s theorem requires that we understand when a representation that is Cp-admissible
over an extension of Qp is Cp-admissible over a larger or smaller field. This is provided by the
following proposition:

Proposition 125. (Serre) Let K be a finite extension of Qp, K ′ any algebraic extension of K,
(ρ, V ) a p-adic representation of GK of dimension n. Then

7Note that K̂ is also the completion of K with respect to the p-adic metric on K since both spaces are complete
and contain K as a dense subset.
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1. If V is Cp-admissible, then V |GK′ is Cp-admissible (by this we mean that V , regarded as a
representation of GK′ ⊂ GK is admissible, i.e. that dimK̂′(V ⊗ Cp)GK′ = dimQp V ).

2. If in addition the image of |·|K′ is discrete, then if V |GK′ is Cp-admissible, V is also Cp-
admissible.

Proof. V is Cp-admissible if and only if V ⊗K Cp ∼= Cnp as GK representations, which implies that
K ′ ⊗ (V ⊗K Cp) = V ⊗K′ Cp ∼= Cnp as GK′ representations. This proves (1).
To prove (2), we start with

Lemma 126. Let K be a finite extension of Qp, and K ⊂ K ′ ⊂ K̄. Extend the absolute value on
K to K ′. Then the absolute value on K ′ is discrete if and only if K ′ is a finite extension of an
unramified extension of K.

Proof. Recall that a ramified extension L/K of ramification index e is such that the image of |·|L is
the 1/e powers of the image of |·|K . Now, ⇐ is clear since unramified extensions don’t change the
image of the absolute value. To see ⇒, let K ′′ be the maximal unramified extension of K in K ′.
Then K ′/K ′′ is totally ramified, and must be finite else the image of the absolute value will clearly
not be discrete.

Now, if K ′ is not Galois over K, replace K ′ by its Galois closure; by part (1), it suffices to prove (2)
for this new K ′, since by Lemma ??, the new K ′ also satisfies the discreteness condition. Letting
Knr be the maximal unramified extension of K contained in K ′, we have that K ′/Knr is finite Galois
and Knr/K is unramified. So we need only prove (2) in the two cases where K ′/K is finite Galois
and where K ′/K is unramified.

Assume first that K ′/K is finite Galois and that V |GK′ is Cp-admissible. By Corollary ??, it suffices
to show that H1(Gal(K ′/K), GLn(CGK′p )) = 0. Now, this is simply H1(Gal(K ′/K), GLn(K ′)) since
K ′ is closed, and this is zero by Hilbert’s Theorem 90.

If K ′/K is unramified and V |GK′ is Cp-admissible, then we have K ′ ⊂ K̂ ′, where the inclusion is
perhaps proper. Again by Corollary ??, it suffices to show that

H1(Gal(K ′/K), GLn(CGK′p )) = H1(Gal(K ′/K), GLn(K̂ ′)) = 0

Here we are actually considering the continuous cohomology. But this is the same as Note that the
statement of
Hilbert 90
probably needs
to be slightly
different, then.

H1
cont(Gal(K ′/K), GLn(OK̂′))

since we have seen before that a semi-linear representation of a compact group over a space has

Where have we
seen this before

a stable lattice. But GLn(OK̂′) = lim←−r GLn(OK̂′/mr) since OK̂ ′ is a DVR since K̂ ′ is complete.

How does stable
lattice imply
the result?

Limits commute with cohomology, so

H1
cont(Gal(K ′/K), GLn(K̂ ′)) = lim←−

r

H1
cont(Gal(K ′/K), GLn(OK̂′/m

r))

To see that this is zero, consider the case r = 2. Let k′ be the residue field of OK̂′ (and of OK′), k
the residue field of K. We have an exact sequence of groups

1→ 1 + mMn(k′)→ GLn(OK̂′/m
2)→ GLn(OK̂′/m)→ 0

where the last map is simply reduction. Now, since K ′/K is unramified, Gal(K ′/K) = Gal(k′/k),
so from the long exact sequence in cohomology, it suffices to show that

H1(Gal(k′/k), GLn(k′)) = 0

H1(Gal(k′/k), 1 + mMn(k′)) = 0
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The first follows from Hilbert 90. For the second, 1 + mMn(k′) ∼= Mn(k′) via the log map [note that
(1 + pa)(1 + pb) = 1 + p(a+ b) + p2 . . . ], so this cohomology is zero by the additive version of Hilbert
90.

It is clear that this argument generalizes to r > 2.

Remark 127. The only fact we used about Cp in the K ′/K finite case was the fact that CGKp = K,
CGK′p = K ′. So if B is any regular ring with BGK′ = K ′ for any finite K ′/K, the same proof works.
B is such a ring for BdeRham, but not for Bcrys.

Remark 128. In the unramified case, note that Gal(K ′/K) = Gal(K̂ ′/K), but it doesn’t work
to write H1(Gal(K ′/K), GLn(K̂ ′)) = H1(Gal(K̂ ′/K), GLn(K̂ ′)) since Hilbert 90 does not apply to
this non-algebraic extension.

Remark 129. Proposition ?? implies ⇐ in Sen’s Theorem (Theorem ??): Since ρ(IK) is finite, we
may choose a finite extension of K so that ρ(IK) is trivial; after an unramified extension, we may
then assume that ρ(GK) is trivial. Then V is Cp-admissible over this larger field by Proposition ??. How do we

choose these
extensions?

Apply the proposition.

To prove the remainder of Sen’s theorem, we will need to develop the so-called Sen theory. Thus
let [K : Qp] be a finite extension, V a GK representation of dimension d. Define a field K∞ by
K∞ =

⋃
nKn where Kn = K(ζpn) for ζpn some primitive pn root of unity. Then K∞ is Galois over

K with Galois group Γ = Gal(K∞/K), and K̄ is Galois over K∞ with Galois group H. Note that
K∞ is ramified over K. The outline of what is to follow is:

• We will define a K∞ vector space Dsen(V ) that has a semi-linear action of Γ.

• This will allow us to define a K∞-linear operator ϕ on Dsen(V ). We show that its characteristic
polynomial is χϕ(x) ∈ K[x].

• The roots of χϕ(x) are called the Hodge-Tate-Sen weights of ϕ; there are d of them (in K̄)
counted with multiplicity.

• Finally, ϕ = 0 iff V is Cp-admissible iff ρ(IK) is finite, thus proving the other direction of Sen’s
theorem.

Recall that ωp : GK → Z∗p. This map is surjective for K = Qp, and has image a finite index subgroup
for [K : Qp] <∞. ωp is trivial on K̄/K∞ since it was defined by an action on pn roots of unity; in
fact H = kerωp. Thus ωp induces an injection Γ→ Z∗p and thus Γ is the image of ωp in Z∗p.

Proposition 130. If V is a semi-linear representation of GK , then (V ⊗ Cp)H has dimension d

over K̂∞. In other words, V |H is always Cp-admissible.

We will not prove this. However, this is equivalent to the statement that

H1(H,GLd(Cp)) = H1(H,GLd(CHp )) = 0

by Corollary ??. The proof is longer and harder than the previous arguments. Essentially, an
element of Cp is the limit of elements of Q̄p; we find a sequence of elements that converge quickly
to an element of Cp but whose algebraic degrees do not increase rapidly, and this suffices to prove
the result.

Definition 131. If W is a finite-dimensional vector space over K̂∞ with a Γ action, then W is
clearly also a K-vector space. If v ∈ W , we say that v is Γ-finite over K if the K-linear span of γv
for γ ∈ Γ has finite dimension over K.
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Example 132. Let W = K̂∞ with the obvious Γ action. Then v is Γ-finite if and only if v is
algebraic over K if and only if v ∈ K∞ (this uses the fact that the algebraic elements of K̂∞ are
just K∞, a fact that follows from Theorem ??).

Proposition 133. In (V ⊗Cp)H , call Dsen(V ) the K-subspace generated by vectors that are Γ-finite
over K. Then Dsen(V ) is a K∞ vector space of dimension d and it has a semi-linear Γ action. Why a K∞

vector space?

We will not prove this result either. As a consequence, we get

Dsen(V ) ⊂ (V ⊗ Cp)H ⊂ V ⊗ Cp

	 	 	

Γ Γ GK

where the first is a K∞ vector space of dimension d, the second a K̂∞ vector space of dimension
d, and the third a Cp vector space of dimension d. Thus we can recover (V ⊗ Cp)H by tensoring
Dsen(V ) with K̂∞.

Proposition 134. There is a unique K∞ operator ϕ on Dsen(V ) such that for all v ∈ Dsen(V )
there exists an open subgroup Γv of Γ such that for all γ ∈ Γv,

γ · v = exp(ϕ logp(ωp(γ)))(v)

Further, there is a basis of Dsen(V ) over K∞ in which the matrix of ϕ has coefficients in K.

Think by analogy about R acting on Rn. The action is determined by the derivative at 0 using the
exponential map. Here the group is written multiplicatively, hence the log.

Remark 135. If ρ : Zp → GLn(L) is continuous (i.e. a one-parameter subgroup), then on an open
subgroup of Zp, we have ρ(t) = exp(tϕ) where ϕ ∈Mn(L). To see this, note that on a small enough
subgroup of Zp, log ρ is defined, so we get a map Zp →Mn(L), i.e. n2 maps Zp → L. Then what?

Remark 136. Γ acts semi-linearly on Dsen(V ). So for λ ∈ K∞, w ∈ Dsen(V ), we have g(λw) =
g(λ)g(w). But λ ∈ K ′ for some K ′/K finite; if we take g ∈ Gal(K∞/K ′), then g(λw) = λg(w).
Thus the Γ-action is not so far from a linear action.

Proof. Let e1, . . . , ed be a basis of Dsen(V ). There is some K ′/K such that

D′ = K ′e1 ⊕ · · · ⊕K ′ed

is Γ-stable, for since the e1 are all Γ-finite, take K ′ to be a finite extension containing the span of
the images of the ei under Γ. Then Γ acts semi-linearly on D′. Let Γ′ = Gal(K̄/K ′) ⊂ Γ. Then
Γ′ acts linearly on K ′ since it acts trivially on scalars. Then by the first remark above, there is a
K ′-linear map ϕ : D′ → D′ such that for g ∈ Γ′, v ∈ D′,

g(v) = exp(ϕ log(ωp(g)))(v)

To ensure this, enlarge K ′ if necessary to get the image of Γ′ inside 1 + pZp.

Now, for w ∈ Dsen(V ), write w = λ1e1 + · · · + λded for λi ∈ K∞, and let Γ∗ be an open subgroup
fixing the λi. Then for g ∈ Γw = Γ′ ∩ Γ∗,

g(w) = exp(ϕ log(ωp(g)))w

since g fixes all the λi and all the ei ∈ D′. This proves existence.
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To see uniqueness, note that

gw − w = (exp(ϕ log(ωp(g)))− Id)w

Writing t = logωp(g) ∈ Zp and dividing by t, we get

gw − w
t

=
exp(ϕt)− Id

t

and letting g → e, the right-hand side becomes ϕ(w). This proves uniqueness, since only one ϕ can
be the limit of the left-hand side.

For the final statement, for g′ ∈ Γ, we have

ϕ ◦ g′ = lim
gg′(w)− g′(w)

log t
= g′ ◦ ϕ

and thus g′−1
ϕg′ = ϕ. This means that if B is some basis of Dsen(V ), then

MatBϕ = g′(Matg′(B)ϕ)

The result then follows from

Lemma 137. Let L/K be Galois, A ∈ Mn(L). If g(A) is similar to A for all g ∈ Gal(L/K), then
A is similar to a matrix in Mn(K).

Proof. Since g(A) ∼ A, g(A) and A have the same minimal polynomial; since this holds for all
g ∈ Gal(L/K), the minimal polynomial is defined over K. Why does this

imply that the
matrix can be?

This entire construction works only because K∞ is algebraic over K so that we can find an open
subgroup on which the action is linear. This would not work, for example, in general over Cp.

Definition 138. ϕ is called the Sen operator, and Dsen the Sen space. The eigenvalues of ϕ (i.e.
the roots of its characteristic polynomial) are called the Hodge-Tate-Sen weights of V , and lie in K̄.
These are an important invariant of the representation.

Proposition 139. ϕ = 0 if and only if V is Cp-admissible.

In fact, more is true: dimK∞ kerϕ = dimK(V ⊗ Cp)G.

Proof. If V is Cp-admissible, then A = (V ⊗ Cp)GK has dimension d over K. Now, Γ acts trivially
on A, so that

A = (V ⊗ Cp)GK ⊂ Dsen(V ) ⊂ B = (V ⊗ Cp)H

By the definition of ϕ, if Γ acts trivially on a basis of Dsen(V ), then ϕ = 0. Now, it is true (although
nontrivial) that a basis of A over K is a basis of B over K∞. rest is gibberish

Now assume ϕ = 0. Then Γ acts finitely on Dsen(V ) since it acts through a finite quotient. Thus Γ
acts continuously for the discrete topology on Dsen(V ) and thus by Hilbert 90, Dsen(V ) is the trivial
semi-linear representation. Thus

dimK(V ⊗ Cp)GK = dimK Dsen(V )Γ = d
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Note however that Cp-admissible is not equivalent to the statement that the Hodge-Tate-Sen weights
are zero since ϕ could be nilpotent.

Proposition 140. Let (ρ, V ) be any representation, and let G = ρ(IK) ⊂ GLd(Qp). (GLd(Qp) is a
“p-adic Lie group”). G is compact since IK is compact and thus is a closed subgroup of a Lie group,
so is itself a Lie group. Let its Lie algebra be g. Thus

g = {M ∈Md(Qp) | exp(tM) ∈ G ∀ sufficiently small t ∈ Zp}

This is a subspace of Md(Qp), and dimG = dim g. Then g is the smallest subspace of Md(Qp) such
that ϕ ∈ End(V ⊗ Cp) lies in g⊗ Cp ⊂Md(Cp) = End(V ⊗ Cp).

We will not prove this.

Corollary 141. If V is Cp-admissible, then ϕ = 0, then g = 0 and thus ρ(IK) is finite.

This finally proves the converse of Sen’s theorem, that V being Cp-admissible implies that ρ(IK) is
finite.

Example 142.
ωp : GK //

��;;;
Z∗p

Γ

CC���

Now, Z∗p ∼= Z/pZ × (1 + pZp). Assume that ωp(GK) ⊂ 1 + pZp (i.e. that K ⊃ Qp(ζp), for then
ωp(GK) is trivial in the “p” place; just look at the map GK → Gal(K(µp)/K) → (Z/pZ)∗; here
K(µp) = K). Then for λ ∈ Zp, define ωλp (·) = exp(λ log(ωp(·))) (alternatively, use this definition for
λ ∈ Z and extend by continuity). For V = Qp, G acts on it through ωλp . Dsen(V ) = K∞, and the
action of ϕ is λ. Then V ⊗ Cp = Cp with the ωλp action and (V ⊗ Cp)H = K∞ with the ωλp action.
Thus V has weight λ.

5.3.4 Hodge-Tate representations

Definition 143. For K a finite extension of Qp, define BHT = Cp[t, t−1] where GK acts on tn via
ωnp . That is, for g ∈ GK ,

g

(
m∑
i=n

ait
i

)
=

m∑
i=n

g(ai)ωp(g)iti

Thus as a GK-module, BHT = ⊕i∈ZCp(i), where Cp(i) is Cp with the semi-linear action of ωip. Hence
Cp with the trivial action is a subgroup of BHT.

Proposition 144. BHT is (Qp, GK)-regular, and BGKHT = K.

Proof. We prove the second part first. Invariance under the GK action depends only on the module
structure of B, not its ring structure, so we start with BGKHT = ⊕i∈ZCp(i)GK . For i = 0, Tate’s
theorem implies that CGKp = K. For i 6= 0, note that Cp(n) = Cp⊗ωnp , so that Cp(i)GK = DCp(ωnp ). why is Cp(n)

this tensor
product?

Thus Cp(i)GK has dimension 0 or 1. If it has dimension 1, we conclude that ωnp is Cp-admissible.
But the image of IK under ωnp is not finite for n 6= 0. Thus the dimension is zero.

Why is ωnp (IK)
not finite for
n 6= 0?

To prove the first part, note first that Frac(BHT) = Cp(t) as a ring, so that Frac(BHT)GK =
Cp(t)GK ⊂ Cp((T ))GK (where we extend the action of GK on Cp(t)). This action is compatible with
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the GK action on Frac(BHT) since it is obviously compatible on polynomials and thus on rational
functions. As before, only i = 0 contributes, so this is again K = BGKHT .

Finally, suppose L ⊂ BHT is a Qp-line that is GK-invariant. Then L = Qpv for some v; it is easily
seen that in order for this to be GK-invariant, we must have v = ati for some i, since otherwise the
different action on different powers of t make it impossible for v to be GK-invariant. But ati ∈ B∗HT

and we are done. Thus BHT is (Qp, GK)-regular.

Definition 145. V is Hodge-Tate if V is BHT-admissible. If V is Hodge-Tate, we write DHT(V ) =
DBHT(V ).

Definition 146. Note that if V is Hodge-Tate, thenDHT(V ) = ⊕n∈Z(V ⊗Cp(n))GK . The i for which
dim(V ⊗ Cp(i))GK > 0 are called the Hodge-Tate weights of V , and in this case dim(V ⊗ Cp(i))GK
is called the multiplicity of the Hodge-Tate weight −i.

In other words, k ∈ Z is a Hodge-Tate weight of V of multiplicity dim(V ⊗ Cp(n))GK .

Lemma 147. If V is a dimension d representation of GK , then V is Hodge-Tate if and only if the
sum of the multiplicities of the Hodge-Tate weights of V is d.

Proof. Obvious.

For example, ωp is Hodge-Tate of weight −1, and is not Cp-admissible.

Proposition 148. V is Hodge-Tate if and only if V ⊗ Cp ∼= ⊕k∈ZCp(k)mk as a Cp-semi-linear
representation of GK . In this case

∑
mk = dimV , and mk is the multiplicity of the Hodge-Tate

weight k.

Thus a Hodge-Tate representation is not exactly the trivial semi-linear representation.

Proof. ⇐:

V ⊗BHT = (V ⊗Qp Cp)⊗Cp BHT = ⊕kCp(k)mk ⊗⊕nCp(n) = ⊕k,nCp(n+ k)mk

and thus
DHT(V ) = ⊕k,n(Cp(n+ k)GK )mk

and we know from the above analysis that Cp(n+ k)GK = 0 unless n+ k = 0. Thus

DHT(V ) = ⊕kKm−n

so that dimDHT(V ) =
∑
nm−n = d where we know the sum is in fact d since dimV ⊗ Cp = d.

Thus V is Hodge-Tate, and the Hodge-Tate weight k has multiplicity mk.

⇒: Very similar. Exercise. Exercise

Theorem 149. V is Hodge-Tate if and only if ϕ acts semi-simply on Dsen(V ) with integral eigen-
values. If this holds, the eigenvalues of ϕ are the Hodge-Tate weights of V , counted with multiplicity.

Proof. If V is Hodge-Tate, then V ⊗ Cp = ⊕Cp(k)mk with
∑
mk = d. Now, (V ⊗ Cp)H is a K̂∞

vector space isomorphic to ⊕(Cp(k)mk)H . But V is always H-admissible (Proposition ??), so this
is just ⊕K̂∞(k)mk Why does the

last direct sum
follow?Now, ϕ acts on K∞(k) as multiplication by k. Thus ϕ is semi-simple with eigenvalues as stated.

why is this the
action?
Presumably
because it acts
thru the log
map
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Thus Sen theory is in some sense more general than Hodge-Tate representations: For every V , there
is ϕ. When the Hodge-Tate-Sen weights are rational integers and ϕ is semi-simple, V is Hodge-Tate
and we retrive the Hodge-Tate weights.

Note by the way that ωλp for λ /∈ Z is never Hodge-Tate because there are no GK-invariants (n+λ 6= 0
for any n). Thus semi-simple is not a sufficient condition in the above theorem - integrality of weights
really is necessary as well.

Corollary 150. If 0→ U → V → W → 0 is an exact sequence of GK representations and if U,W
are Hodge-Tate with no weights in common, then V is Hodge-Tate.

Proof. Dsen(V ) is an extension of Dsen(U) by Dsen(W ), i.e.

0→ Dsen(U)→ Dsen(V )→ Dsen(W )→ 0

is exact as modules with ϕ actions (note that a priori this sequence is not short exact since the final
map need not be surjective; in this case, however, it is by dimensional analysis once we know that
V is Hodge-Tate). The actions of ϕ on Dsen(U), Dsen(W ) are semi-simple with integral eigenvalues
since U,W are Hodge-Tate. It is thus clear that Dsen(V ) has integral eigenvalues. But if the weights
are distinct, this sequence splits under the ϕ action, so the action of ϕ on Dsen(V ) is semi-simple as why split?

well.

Remark 151. This corollary need not in fact hold if the weights of U and W are not disjoint. For
example, let (ρ, V ) be a representation with To figure out:

why would its
weights be 0, 0.
Also, why do
weights of 0
imply
Cp-admissible?

ρ(g) =
(

1 α(g)
0 1

)
, α : GK → (Qp,+)

and choose α such that α(IK) is infinite; we can do this by Class Field Theory sinceO∗K ∼= I(Kab/K).
We then get an exact sequence 0→ Qp → V → Qp → 0. But V is not Hodge-Tate, for if it were, its
weights would be 0, 0, so it would be Cp-admissible so the image of inertia would be finite.

Remark 152. If K ′/K is a finite extension, then V is Hodge-Tate over GK if and only if V is
Hodge-Tate over GK′ . Why is this

true?

5.3.5 Tate elliptic curves over a p-adic field

Recall that if E/C is an elliptic curve, we can write

E(C) ∼= C/Λ = C/(Z⊕ Zw), w ∈ C− R

Now, C/Z e2πi·−−−→∼= C∗, so

E(C) ∼= C∗/qZ, q = e2πiw

We denote this curve Eq and note that over C, every elliptic curve is Eq for some q; an equation for
Eq(C) is

y2 + xy = x3 − b2(q)x− b3(q)

where

b2(q) = 5
∑
n≥1

n3 qn

1− qn

b3(q) =
∑
n≥1

(
7n5 + 5n3

) qn

12(1− qn)
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from the Weierstrass theorems. Additionally,

j(Eq) = j(q) =
1
q

+ 744 + 19688q + · · · ∈ Z[[q]] +
1
q

Now, over Qp instead of C, if q ∈ Q∗p is well-chosen, the series for b2, b3 will converge and we will
get Eq ∼= Q∗p/qZ.

Theorem 153. (Tate) Let K/Qp be a finite extension, q ∈ K∗, |q| < 1. Then b2(q), b3(q) converge,
and

Eq : y2 + xy = x3 − b2(q)x− b3(x)

is an elliptic curve over K (that is, its discriminant is nonzero). Further, if K ′/K is any algebraic
extension, then there is a natural isomorphism of groups Eq(K ′) ∼= K ′∗/qZ (natural in the sense that
the appropriate diagrams commute; in particular, if K ′/K is Galois, the isomorphism is compatible
with the Galois action).

We won’t give a formal proof of this. Note that most of this is purely a computation; the final
statement reduces to an equality of power series; these power series are equal over C, thus over Q,
thus over Qp and thus over K.

Note that in contrast to the C case, not all elliptic curves over K are Eq for some q with |q| < 1.

Also note that over C, there is no Galois action since C is algebraically closed.

Proposition 154. Every elliptic curve E/K such that j(E) ∈ K −OK (i.e. such that |j(E)| > 1)
becomes isomorphic to some Eq after replacing K by a finite extension.

Proof. If |j(E)| > 1, then there is some q ∈ K with |q| < 1 such that j(q) = j(E). This is so
since for |q| < 1, |j(q)| > 1; solve the equation j(E) = 1

q + 744 + · · · for q by inverting the series.
Then j(Eq) = j(E). But two elliptic curves with the same j-invariant are isomorphic after a finite
extension.

The converse is also true - if j(E) ∈ OK , then E is not isomorphic to Eq in any finite extension.

Looking at pn-torsion, then,
Eq(K̄)[pn] = (K̄∗/qZ)[pn]

and we have an exact sequence

1→ µpn(K̄)→ (K̄∗/qZ)[pn]→ q1/pnZ/qZ → 1

since, first, all pn roots of unity in K̄ are clearly pn torsion, and none of those are of the form qZ

since |q| < 1, so the first map is injective, and it is also clear that the remaining pn torsion points
are as given in the exact sequence.

Now, the cardinalities of the first and last groups in the exact sequence are both pn, so that the
cardinality of the middle group is (pn)2.

Additionally, GK acts on (K̄∗/qZ)[pn], and µpn(K̄) is stable under that GK action, so we get a
quotient action. Now take the projective limit, noting that the exact sequence is compatible with
the maps and the GK action is as well, to get

1 → lim←−µpn(K̄) → Tp(Eq) → lim←− q
1/pnZ/qZ → 1

0 → Zp → Tp(Eq) → Zp → 0
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The Galois action on the left-hand Zp is ωp since we defined ωp precisely from the action on the
inverse limit of the roots of unity. Since det(Tp(E)) = ωp, the Galois action on the right-hand Zp is
trivial. Using the notation Zp(i) as before for Cp(i), we can write this exact sequence, after tensoring
with Qp, as

0→ Qp(1)→ Vp(Eq)→ Qp → 0

Corollary 155. If E/K is an elliptic curve with j(E) ∈ K −OK , then Vp(E) is Hodge-Tate with
Hodge-Tate weights 0,−1.

Proof. The property of being Hodge-Tate, and the Hodge-Tate weights, are invariant under finite
extension. So assume E = Eq for some q. Then Vp(Eq) is an extension of Qp(0) with Hodge-Tate
weight 0 by Qp(1) with Hodge-Tate weight −1. Since the Hodge-Tate weights are disjoint, it follows
that Vp(Eq) is also Hodge-Tate and the weights are as given.

Note that
H1

et(E,Qp) = Vp(E)∗ = Vp(E)⊗ ω−1
p =df Vp(E)(−1)

so that H1
et(E,Qp) is Hodge-Tate of weights 0, 1 = {0,−1}+ 1.

Note also that the exact sequence

0→ Qp(1)→ Vp(Eq)→ Qp → 0

for if it were, we’d get a lift from q1/pnZ/qZ to (K̄∗/qZ)[pn] invariant under GK on all pn roots of
unity for all n; this is impossible. This exact sequence determines q up to q 7→ qr for r ∈ Q; thus Notes say

“torsion in K,
impossible”

Vp(E) determines Eq up to isogeny. The exact sequence does, however, split after tensoring with
Cp.

Theorem 156. (Tate) Actually, any elliptic curve E/K has Vp(E) Hodge-Tate with weights 0,−1.

In general, Vp(E) is irreducible, so the general case is not as easy as the above; the proof proceeds
by tensoring with Cp.

Theorem 157. (Raynaud): Any abelian variety over K of dimension g is Hodge-Tate with weights
0,−1, each of multiplicity g.

Theorem 158. (Faltings) [first version] Let X/K be a proper and smooth variety of dimension d.
Then for 0 ≤ n ≤ 2d, Hn

et(X,Qp) is Hodge-Tate.

Note the following facts about cohomology:

• If X is a real manifold, then the deRham cohomology is defined as

Hn
dR(X,C) =

{closed smooth n-differential forms/X}
{exact smooth n-differential forms/X}

• If X is an algebraic variety over C, proper and smooth, then the Hodge decomposition of X
is given by

Hn
dR(X(C),C) ∼=

⊕
p+q=n

Hp,q(X(C),C)

The isomorphism is canonical, and the groups Hp,q satisfy:

1. dimHp,q(X(C),C) = dimHq,p(X(C),C)
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2. Hp,q(X(C),C) = Hp(X,ΩqX) where X is the underlying algebraic variety and ΩqX is the
coherent sheaf ΛqΩX and ΩX is the sheaf of algebraic differential forms over X (which is
larger than the sheaf of smooth forms).

• If X is an algebraic variety, proper and smooth over K (assume charK = 0 for simplicity) we
get a similar theory with slightly less information. Grothendieck defined a purely algebraic
deRham cohomology Hn

dR(X) which is a K-vector space such that for K = C, there is a canon-
ical isomorphism HdR(X(C),C) ∼= HdR(X). Hn

dR(X) is defined to be the hypercohomology of
the functor Γ of global sections applied to the complex of sheaves

0→ Ωx
Ω−→
d

2

X

Ω−→
d

3

x

···−→
d

Ω−→
d

d

X
→ 0

Hn
dR(X) comes with a decreasing filtration

· · · ⊃ F pHn
dR(X) ⊃ F p+1Hn

dR(X) ⊃ · · ·

and for p� 0, F pHn
dR(X) = Hn

dR(X); for p� 0, F pHn
dR(X) = 0. Additionally,

F pHn
dR(X)/F p+1Hn

dR(X) = Hp(X,Ωn−pX )

so we get the same dimensional result as in the complex case - the filtration gives quotients,
not subspaces. Of course the associated exact sequence splits, but not canonically. This arises from

spectral
sequences - see
appendix in
Eisenbud

Theorem 159. (Faltings) [complete version] Let X/K be a proper and smooth variety, [K : Qp] <
∞. Then

Hn
et(X,Qp)⊗Qp Cp ∼=

⊕
q

Cp(−q)⊗Hn−q(X,ΩqX)

as groups with GK action.

The Galois action on the left arises from the action of GK on each factor; on the right, the Galois
action on Cp(−q) is clear; the Galois action on cohomology is trivial.

Interpreted as a statement about Cp-vector spaces, we get the same dimensional statement as before.
But interpreted as GK-modules, the right-hand side is⊕

q

Cp(−q)mq , mq = dimHn−q(X,ΩqX)

and we get that Hn
et(X,Qp) is Hodge-Tate with weights q and multiplicities mq.

This theorem arose by analogy with the complex situation. Over C, when you tensor with C, you
get a direct sum decomposition, so try the same thing over Qp. Over C, it turns out that the
process works because complex conjugation exists (i.e. things are compatible with the Galois action
of C/R). So the tensor product here is with Cp with its Galois action. This is where the entire idea
of tensoring with big rings to get information about the representation came from.

Another way of stating this theorem is that

DHT (Hn
et(X,Qp)) =

⊕
q

Hn−q(X,ΩqX)

as a graded vector space. Thus from étale cohomology, one can retrieve an approximation of deRham
cohomology.

Finally, note that Faltings’ theorem generalizes Tate’s theorem (let X be of dimension 1).
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5.3.6 deRham representations and the mysterious functor

Grothendieck wanted to be able to retrieve the entire deRham cohomology, which required a bigger
ring. Fontaine considered a ring B+

dR with a Galois action of GK and a topology; in this ring, there
exists t such that gt = ωp(g)t (i.e. the action of g ∈ GK on t is given by multiplying ωp(g) ∈ Cp by t).
B+

dR turns out to be a DVR with uniformizer t and residue field Cp; set BdR = Frac(B+
dR) = B+

dR[t−1].
Then BGKdR = K and F kBdR = tkB+

dR for k ∈ Z.

Definition 160. A representation V is deRham if it is BdR-admissible.

If V is deRham, then DdR(V ) is a K-vector space of dimension dimV , with a decreasing filtration

F iDdR(V ) = (tiB+
dR ⊗ V )GK

Since DdR is finite-dimensional, we have F iDdR(V ) = DdR(V ) for i � 0 and F iDdr(V ) = 0 for
i� 0.

We can say more explicitly what the dimensions of the filtration quotients are:

Proposition 161. If V is deRham, then V is Hodge-Tate and DHT(V ) is the graded space attached
to the filtered space DdR(V ); that is,

DHT(V ) = ⊕i∈ZF
iDdR(V )/F i+1DdR(V )

Concretely, i is a Hodge-Tate weight of V of multiplicity mi = dimK F
iDdR(V )/F i+1DdR(V ).

Proof.
F iDdR(V )][F i+1DdR(V )

=
(V ⊗ tiB+

dR)GK

V ⊗ ti+1B+
dR)GK

↪→ (V ⊗ Cp(i))GK

The inclusion is seen by starting with the exact sequence

0→ V ⊗Qp t
i+1B+

dR → V ⊗Qp t
iB+

dR → V ⊗Qp (tiB+
dR)/(ti+1B+

dR)→ 0

and noting that B+
dR/tB

+
dR = Cp, so that the quotient on the right is V ⊗ Cp(i). Taking invariants

under GK gives

0→ 0→ (V ⊗Qp t
i+1B+

dR)GK → (V ⊗Qp t
iB+

dR)GK → (V ⊗Qp (tiB+
dR)/(ti+1B+

dR))GK

The final map is not in general surjective. If for example GK were finite with order not a multiple
of p, we could average the elements in the inverse image to show that the map was surjective, but
in general it is not; the sequence extends to a long exact sequence in cohomology. But this sequence
gives the inclusion above, and that is good enough, for since V is deRham, we have

d =
∑
i

dimK F
iDdR(V )/F i+1DdR(V ) ≤

∑
i

(V ⊗ Cp(i))GK =
∑
i

dim(V ⊗BHT(V ))GK ≤ d

which means that equality holds for every i. Thus V is Hodge-Tate with Hodge-Tate weights as
given above. The decomposition of DHT(V ) also follows.

Theorem 162. (Faltings) If X/K is proper and smooth with [K : Qp] finite, then

DdR(Hn(X,Qp)) = HdR(X)

as filtered K-vector spaces. Note that the left-hand side is a K-vector space since BGKdR = K.

Corollary 163. Hn
et(X,Qp) is a deRham representation since dimHn(X,Qp) = dimHdR(X).

Thus deRham implies Hodge-Tate.
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5.3.7 Crystalline representations

Bcrys is a subring of BdR that is not a field. It also contains t, and has a decreasing filtration given
by F iBcrys = Bcrys ∩ F iBdR. Additionally,

F iBcrys/F
i+1Bcrys

∼= Cp(i)

Finally, BGKcrys = K0, where K0 is the largest unramified extension of Qp contained in K.

Definition 164. V is crystalline if V is Bcrys-admissible.

Proposition 165. If V is crystalline, then V is deRham.

Proof. This follows from the general fact that if B ⊂ A are (F,G)-regular rings and V is B-
admissible, then V is A-admissible, proven by showing that the A-semi-linear representation is
trivial as well. How does this

proof go?
Theorem 166. (Faltings) Let X/K be a proper and smooth variety with [K : Qp] finite which also
has a proper and smooth model over OK . Then Hn

et(X,Qp) is crystalline, and This is
somehow the
same as having
good reduction.

DcrysH
n
et(X,Qp) = Hn

crys(X̄)

where X̄ is the special fiber of the model.

We have thus shown the following inclusions:

crystalline ⊂ deRham ⊂ Hodge-Tate ⊂ general representation

All of these inclusions are proper. We have already seen that, for example, ωλp is not Hodge-Tate
unless λ is integral; in general, a representation is Hodge-Tate only if its Hodge-Tate-Sen weights
are integral.

The proof that there are Hodge-Tate representations that are not deRham uses deformation theory
to show that the dimension of the space of Hodge-Tate representations (as a vector space over some
field) exceeds that of the space of deRham representations.

Proposition 167. If χ : GK → L∗ is a character, where [K : Qp] <∞, [L : Qp] <∞, then TFAE:

1. χ is Hodge-Tate as a representation of degree [L : Qp] over Qp,

2. χ is deRham,

3. χ ◦ Art : K∗ → L∗, a character of K∗, is such that for some open (i.e. finite index) subgroup
U of O∗K and nσ ∈ Z,

(χ ◦Art)|U (x) =
∏

σ∈Hom(K,L̄)

σ(x)nσ

If these conditions hold and if L contains the normal closure of K, then the Hodge-Tate weights of
χ as a Qp-representation are the nσ with multiplicity [L : K]. (Note that if two of the nσ are the
same, then the multiplicity of nσ will be 2[L : K], and so on). Thus the sum of the weights, counting
multiplicities, is [L : K][K : Qp] = [L : Qp].

Finally, χ is crystalline if and only if (3) holds for U = O∗K .
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Remark 168. Note that since χ maps into L∗, it factors through Gab
K , and K∗ ↪→ Gab

K with dense
image. Under the Artin map, O∗K maps to inertia in Gab

K , so U ⊂ O∗K means that U corresponds to
a subgroup of inertia in Gab

K .

Remark 169. Note that the product in (3) has no a priori reason to be in L∗.

Remark 170. Note that for K ′/K finite, χ is Hodge-Tate over K if and only if it is Hodge-Tate
over K ′, and that GK′ is open in GK so that IK′ is open in IK , so it is not surprising that some
open subgroup property is involved.

Remark 171. (3) means that χ is locally algebraic, while the condition on crystallinity means that
χ is algebraic.

Remark 172. Note that if all nσ = 0, then χ = 0 on some open subgroup U , so that χ is
potentially unramified and thus deRham; crystalline means that χ is unramified. So crystalline
generalizes unramified.

Proof. Start with the case K = L = Qp; then χ : GQp → Q∗p. If χ is Hodge-Tate, then it has weights
n, so that χωnp has weight 0, so is Cp-admissible, so inertia has finite image. Thus χωnp ◦ Art has
finite image on Z∗p and thus trivial image on some U ⊂ Z∗p of finite index (namely the kernel). But

(χωnp ◦Art)(x) = (χ ◦Art)(ωnp ◦Art)(χ ◦Art)(x) · x−n

On U , this is trivial, so that χ ◦ Art(x) = xn on U ; this implies (3) with nσ = n (there is only one
σ). Thus (1) ⇒ (3).

(3) ⇒ (1) is simply the reverse of this argument.

We already know that (2)⇒ (1), so it remains to show that (3)⇒ (2). For this, choose K ′/Qp such
that NK′/Qp(O∗K′) ⊂ U ; this is possible since by Class Field Theory, the image of the norm map
corresponds to inclusion of Galois groups. Thus (again using CFT for the first equality) What part of

CFT implies
this?(χ|GK′ ) ◦ArtK′ = χ ◦Art ◦NK′/Qp : K ′∗ → Q∗p

on O∗K = (NK′/Qp(·))n, so that χ|IK′= ω−np |IK′ and thus χ|GK′ deRham implies that χGK deRham.
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6 Galois Representations of Number Fields

We now return to our main object of study. Let K be a finite algebraic extension of Q, and assume

ρ : GK → GLn(Q`)

is a continuous `-adic representation. We wish to understand which representations arise from
geometry.

We know (see the section on Étale Cohomology) that the Étale cohomology of a proper and smooth
variety given representations, which are geometric. If we allow twists of these representations by
ωnp , this turns out to cover all geometric representations.

Geometric representations are almost everywhere unramified because X has good reduction almost
everywhere. Why does this

follow?
Thus if ρ is geometric, then

1. ρ is unramified almost everywhere,

2. for all places v of K such that v | l, ρ|GKv is deRham by Faltings’ theorem. (Note that ρ|GKv
is defined by the inclusion GKv ↪→ GK that is defined up to conjugacy.)

Conjecture 173. (Fontaine-Mazur, 1994) Every representation ρ : GK → GLn(Q`) satisfying (1)
and (2) is geometric.

This conjecture is widely believed to be true, but very few specific cases have actually been proven.
To see why the conjecture is important, note that is ρ is geometric, then ρ also satisfies

3. ρ is rational, i.e. the characteristic polynomial of ρ(Frobv) for v any place of K note dividing
` where ρ is unramified lies in Q[x],

4. ρ has a weight w ∈ Z, i.e. eigenvalues are Weil numbers of weight w.

Thus a corollary of the conjecture is that any representation satisfying (1) and (2) also satisfies (3)
and (4). But (1) is a very weak condition - most representations are unramified almost everywhere,
and (2) is also quite weak, particularly for K = Q. (3) and (4), however, are strong conditions, as
among other things they are statements that hold almost everywhere.

Theorem 174. If K is a number field, ρ an abelian representation of GK (that is, ρ(GK) is abelian),
then the Fontaine-Mazur conjecture holds.

Proof. (Sketch) First, assume ρ is a character χ : GK → L∗ with [L : Q`] = n. Note that any abelian
representation is a sum of characters over some extension. Then by the hypotheses of F-M, χ|GKv Exercise

is deRham, so that it has the form
χ|GKV =

∏
σ

σ(x)nσ

on some open subgroup of K∗v for v | `. Thus by Theorem ??, χ is the λ-adic realization of
an algebraic Hecke character ψ, for some λ | `. Hence it suffices to show that every algebraic
Hecke character is geometric. This was done in the exercises; here is an outline. Recall that K
has a maximal CM subfield KCM, and that if ψ : A∗K/K∗ → C∗ is algebraic, then there is some
ψCM : A∗KCM

/K∗CM → C∗ algebraic such that

ψ = (ψCM ◦NK/KCM)ε
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where ε is a character with finite image. (Exercise Set 4, part 2, exercise 3). So if the result holds
for KCM, then ψCM ◦ NK/KCM is geometric , and ε has finite image thus is geometric, so that the Why is the

norm
geometric? Or
is that not
needed?

Why is ε
geometric?

tensor product is geometric by the Kunneth formula.

When K is CM, (see exercises) I totally missed
this.

Theorem 175. (Kisin, Wiles, Taylor, Khare) Assume K = Q, n = 2, i.e. ρ : GQ → GL2(Q`).
Suppose ρ satisfies (1) and (2). If, in addition,

1. tr ρ(c) = 0 where c is the nontrivial element of Gal(Q/R) (the possibilities for the trace are
−2, 0, 2 depending on the combination of ±1 that ρ has as eigenvalues), and

2. ρ|GQ`
(which is deRham) has distinct Hodge-Tate weights

then ρ is geometric.

These two theorems are all the results that are known regarding the Fontaine-Mazur conjecture.

Note that we have two notions of weights - the Weil numbers, which are global, or motivic, weights,
and the Hodge-Tate weights, which are local weights associated to an `-adic representation of an
`-adic field.

Example 176. ρ = ω`,K = Q. The global weight is w = −2, and the Hodge-Tate weight of ρ|GQ`
why are these
the weights?is −1.

Example 177. Let E/Q be an elliptic curve, ρ = V`(E),K = Q. The global weight is −1 (V`(E)
is the dual of H1, which has weight 1), and the Hodge-Tate weights of ρ|GQ`

are 0,−1.

Theorem 178. If ρ is a representation of GQ satisfying (1)-(4) with global weight w, let k1, . . . , kn
be the Hodge-Tate weights of ρ|GQ`

. Then

k1 + · · ·+ kn =
nw

2

There is a similar formula for K 6= Q.

Proof. Look first at det ρ. It will have Hodge-Tate weight k1 + · · ·+kn and is Hodge-Tate. Its global “DB(V ) is a
graded vector
space;
preserved under
Λn”

weight is nw since all the eigenvalues of Frob have the same absolute value, and its dimension is 1,
so it suffices to prove the result for a character.

But det ρ = ωd` ε. ε maps into roots of unity, so won’t change either the global weight or the
Hodge-Tate weights. The result is true for ωd` .
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7 Galois Cohomology

7.1 Introduction and Motivation

The results of Galois cohomology are almost all due to Tate. Before studying this subject, and
as motivation, we first compare Galois representations in four different settings: L = C, general
representations with [L : Q`] <∞, geometric representations with [L : Q`] <∞, and L a finite field
(with the discrete topology):

ρ : GK → GLL(V ) L = C [L : Q`] <∞ [L : Q`] <∞ L finite
ρ arbitrary ρ geometric

finite image Yes No No No
unramified a.e. Yes

(finite image)
No
(not obvious)

Yes Yes
(finite image)

algebraic Yes
(roots of unity)

No Yes
(Deligne)

Doesn’t
make sense

semisimple Yes (represen-
tation of finite
group)

No Should be so,
not known

No in general

For representations that are not semi-simple, it is natural to want to understand how the extensions
are put together; this leads us to group cohomology.

Thus let L be finite over Q` with ring of integers OL and uniformizer π, and write kL = OL/(π).
We will show how a representation over Q` induces a representation over kL. Many of the initial
definitions and statements below hold more generally, but we will be applying them in this situation.

Definition 179. Let V be an L-vector space of dimension d < ∞, and Λ an OL-submodule of V .
The following are equivalent:

1. Λ is free over OL of rank d;

2. Λ is finitely generated over OL and Λ generates V (that is, Λ⊗OL L ∼= V ).

Such a Λ is called a lattice of V .

In order for this definition to make sense, we must show that the two statements really are equivalent.
For (1) ⇒ (2), since Λ is free of rank d, Λ ∼= Odl , so that Λ⊗OL L = Odl ⊗Ol L = Ld ∼= V . For the
converse, note that Λ is torsion-free, hence free since it is finitely generated over a PID. But then
Λ⊗OL L ∼= Ld implies that Λ has rank d.

Lemma 180. Let Λ,Λ′ be lattices in V . Then

1. There is x ∈ L∗ such that xΛ ⊂ Λ′

2. Λ + Λ′ is a lattice.

Note that in particular item (2) is clearly false for Z ⊂ R; in the case in question, L = Frac(OL).

Proof. (1) Take L-bases e1, . . . , ed and f1, . . . , fd of V for ei ∈ Λ, fi ∈ Λ′. Then ei =
∑
j aijfj ,

aij ∈ L. Clear denominators to get xei =
∑
j cijfj for x ∈ O∗L, cij ∈ OL. Then xΛ ⊂ Λ′ as desired.

(2) Λ + Λ′ is finitely generated and clearly generates V , so it is also a lattice.
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Definition 181. If V is a representation of a group G over L, a lattice Λ ⊂ V is stable under G if
ρ(g)Λ ⊂ Λ for all g ∈ G.

Proposition 182. Any representation V of a group G over L has a stable lattice.

Proof. Let Λ ⊂ V be any lattice. Then StabGΛ is open in G (to see this, take a basis of Λ; then
elements in StabGΛ are elements whose matrix has coefficients in OL; but OL is open in L. Thus Why are the

matrix elements
in OL?

StabGΛ has finite index. Define
Λ′ =

∑
g∈G

ρ(g)Λ

This is well-defined since the sum is actually finite. By the lemma, Λ′ is a lattice, and it is clearly
G-stable.

Thus if Λ is a stable lattice, we can restrict a representation ρ to Λ, and we get a representation

ρΛ : G→ GLOL(Λ) ∼= GLd(OL)

Definition 183.
ρ̄Λ : G

ρλ−→ GLOL(Λ)→ GLkL (Λ/πΛ) , Λ/πΛ ∼= kdL

Definition 184. If ρ is a representation, its semi-simplification ρss is the representation determined
as follows: let X be any irreducible subrepresentation; then

ρss = X ⊕ (V/X)ss

That is, the semi-simplification is the direct sum of the irreducible components; it can be shown
that this is independent of the choices made in the above process. If the matrix of ρ looks likeX ∗ ∗

0 Y ∗
0 0 Z


where X,Y,Z are block matrices, then the semisimplification turns this matrix intoX 0 0

0 Y 0
0 0 Z


Proposition 185. ρ̄ss

Λ
∼= ρ̄ss

Λ′ if Λ,Λ′ are two stable lattices.

Proof. For any representation τ and g ∈ G, write χ(τ(g))(x) for the characteristic polynomial of
τ(g). Then clearly χ(ρ̄Λ(g))(x) ∈ kL[x], χ(ρΛ(g))(x) ∈ OL[x], and

χ(ρΛ(g))(x) = χ(ρ̄Λ(g))(x).

But also clearly
χ(ρΛ(g))(x) = χ(ρ(g))(x)

so that the characteristic polynomial of ρ̄Λ is actually independent of Λ. The result then follows
from the Brauer-Nesbitt theorem, which states that two representations with the same characteristic
polynomials have the same semi-simplifications. (This theorem generalizes the statement that in
characteristic zero, having the same trace implies that the two representations are isomorphic [which
is equivalent in characteristic zero to having the same semi-simplifications]).
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The above arguments work for any field L and any subring OL such that OL is open in L and
L = Frac(OL).

Definition 186. ρ̄ss : GK → GLd(kL) is defined as ρ̄ss
Λ for any stable lattice Λ.

Remark 187. Note that Λ/πnΛ ∼= (OL/πnOl)d, so that if Λ is stable, we get

ρΛ,n : GK → GLL/πn(Λ/πn) ∼= GLd(OL/πnOL)

even though OL/πnOL is not even a domain. Then from the ρΛ,n, you can retrieve ρΛ and ρ, since

Λ = lim←−Λ/πnΛ

and the inverse limit is compatible with the G-action.

Thus representations over these finite rings allow recovery of representations over OL. This is the
start of deformation theory.

Recall that Hn(G,A) is defined for G any (topological) group, A an abelian (topological) group
written additively with a (continuous) G-action. In what follows, we will write Hn for this continuous
cohomology.

Galois cohomology is the case of G = GK or a quotient; the interesting cases are GK for K a local
or global field, and GK,S where S is a finite set of finite places of a global field K.8

Ultimately, we will look at Hn(GK , V ) where ρ : GK → GLL(V ) is a continuous `-adic represen-
tation, i.e. [L : Q`] < ∞. We thus have a GK action on V as an abelian group, and the natural
topology for V is the `-adic topology. Most of Tate’s theory, however, is for Hn(GK , A) for A
discrete. This suffices for:

Theorem 188. (Tate) Let (ρ, V ) be an `-adic representation over L, Λ a stable OL lattice, G a
group (again, think G = GK for K a local field or G = GK,S for K a number field and S a finite
set of finite places of K). Then

1. Hi(G,Λ) is an OL-module of finite type (note that it is clearly an OL-module since Λ is);

2. Hi(G,Λ)⊗OL L ∼= Hi(G,V );

3. Hi(G,Λ) = lim←−nH
i(G,Λ/πnΛ)

We will prove this later, but the proof basically amounts to commutativity of various functors. For
example, (3) amounts to the fact that inverse limits commute with cohomology.

The meaning of this theorem is that we can compute Hi(G,V ) from discrete cohomology.

In what follows, assume A is discrete (it will in practice usually be finite, or at least torsion as an
abelian group).

Recall that

1. H0(G,A) = AG

2.

H1(G,A) =
{f : G→ A such that f(gg′) = f(g) + gf(g′) (crossed homomorphisms)}

{f : G→ A such that f(g) = ga− a for some a ∈ A}
8 Note that in general, when working with infinite Galois groups, one has to remember the Krull topology (i.e.

work continuously), otherwise subgroups will not correspond to field extensions. This is why continuous cohomology
is the natural thing to work with.

58



3. H2(G,A) parameterizes extensions E of G by A. That is it parameterizes exact sequences

0→ A→ E → G→ 1

where the induced action of G on A defined by E 9is the given action. This is not quite the
whole story in the continuous case. In that case, it parameterizes such extensions assuming
that there is a continuous section G→ E. But for profinite groups, this is always the case.

7.2 Cohomological Dimension

Definition 189. A supernatural number is a formal product
∏
p p

np where p ranges over all rational
primes and np ∈ {0, 1, 2, . . . ,∞}.

For any family of supernaturalnumbers, one can define divisibility, GCD, LCM, and products.

If G is a profinite group, we define its order

|G| = lcmHEG |G/H|

Thus |Zp| = p∞, and |Z∗5| = 22 · 5∞ since Z∗5 ∼= Z/4Z× Z5.

Definition 190. If G is profinite and |G| =
∏
` `
n` , a p-Sylow subgroup H of G is a subgroup

H ⊂ G such that |H| = pnp .

Proposition 191. p-Sylow subgroups always exist, and any two p-Sylow subgroups are conjugate.

Proof. (Vague sketch) p-Sylow subgroups exist in finite quotients G/H; choose them compatibly
and take limits.

If G is profinite and A is a torsion G-module, then we can write

A =
⊕
p

A(p)

where A(p) = {x ∈ A | pnx = 0 for some n}. A(p) is called the p-primary part of A.

Then
Hi(G,A) =

⊕
p

Hi(G,A(p))

and each Hi(G,A(p)) is p-primary.

Definition 192. Let G be profinite, p a rational prime. Then the cohomological dimension at p
of G, written cdp(G), is the smallest integer n such that for all p-primary torsion G-modules A,
Hn+1(G,A) = 0. Note that n can be ∞.

Proposition 193. We can replace “torsion” by either “finite” or “simple finite” in the above defi-
nition without changing cdp(G).

9The action is defined as follows: for g ∈ G, choose any lift g′ of g in E; this defines a homomorphism ig : A→ A :
a 7→ g′a(g′)−1; ia lands in A since A, being a kernel, is normal in E; ia is independent of the lift since A is abelian.
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Proof. If A is torsion and p-primary, then A = lim−→i
Ai for Ai ⊂ A finite and p-primary since any

element in A generates a finite subgroup. But then

Hq(G,A) = lim−→Hq(G,Ai)

since any crossed homomorphism G → A actually maps into some Ai. This proves the result for
“finite”.

We now show that Hq(G,A) = 0 for all simple finite modules A if and only if Hq(G,A) = 0 for all
finite modules A. ⇐ is apparent. For the other direction, use induction on |A|. If A is simple, we
are done. Otherwise, write

0→ B → A→ C → 0

where B,A,C are nonzero G-modules with |B| < |A|. Then looking at the long exact sequence in
cohomology,

· · · → Hq(G,C)→ Hq(G,A)→ Hq(G,B)→ · · ·

the groups on both ends are zero by induction, so that Hq(G,A) = 0 as well.

In fact, we will show that cdp(GK) = 2 for both local and global fields, so we need only concern
ourselves with H1 and H2.

While the definition of cdp addresses only the n+ 1 cohomology group, the next proposition shows
that all higher cohomology is zero as well. Thus cdp(G) is the largest n for which cohomology is
nonzero for some G-module.

Proposition 194. If cdp(G) = n, then Hq(G,A) = 0 for all q > n and all p-primary torsion
G-modules A.

Proof. Assume Hk(G,A) = 0 for all torsion p-primary modules A. Given any abelian group A with
trivial G-action, we can construct the “induced module”

MG(A) = Z[G]⊗Z A

This is a G-module with the action induced by the action of G on Z[G]; the action is continuous
since it is continuous on both components. It turns out that for any G-module A, Hi(G,MG(A)) =
0, i > 0. Then consider the exact sequence

0→ A ↪→MG(A)→ B → 0

and look at the long exact sequence in cohomology:

· · · → Hk(G,B)→ Hk+1(G,A)→ Hk+1(G,MG(A))→ · · ·

The left-hand term vanishes since B is also p-primary torsion, and the right-hand term vanishes Why is B
p-primary?since MG(A) is cohomologically trivial. Thus the middle term vanishes as well.

Note that the induction in this proof requires that the kth cohomology vanish for all G-modules, not
just for A itself.

Proposition 195. If G is pro-p and A a p-primary simple finite module, then A = Z/pZ with the
trivial action.
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Proof. Since A is finite, there is some normal open subgroup H ⊂ G that acts trivially on A, so
there is an induced action of G/H on A, and A remains simple as a G/H-module. So we may
as well assume that G is finite, say |G| = pn. Write A as a union of orbits, A =

∐
Gxi. Then

|A| = pn =
∑
|Gxi| =

∑
pni where the last equality follows from the orbit-stabilizer theorem. The

orbit of 0 ∈ A is {0}, so at least one ni = 0. Thus there is some nonzero x ∈ A whose orbit consists
of x only (i.e. whose orbit has cardinality p0 = 1). Consider 〈x〉 ⊂ A. This is fixed by G, and G
acts trivially on it. But A is simple and x 6= 0, so that 〈x〉 = A and A has the trivial G-action. It
follows that A = Z/pZ, since other such modules are not simple.

Corollary 196. If G is pro-p, then cdp(G) is the smallest n such that Hn+1(G,Z/pZ) = 0.

Proposition 197. Let G be profinite and H ⊂ G be a closed subgroup. Then cdp(H) ≤ cdp(G),
and equality holds if either (1) H is open in G, or (2) the index of H in G is prime to p.

Proof. Let A be an H-module, and define MG
H (A) = Z[G]⊗Z[H] A. Shapiro’s lemma then says that

Hq(H,A) ∼= Hq(G,MG
H (A)) canonically. Thus cdp(H) ≤ cdp(G).

Serre [Local Fields] defines the restriction and corestriction maps on cohomology induced by a
subgroup inclusion H ⊂ G if G is finite:

res : Hq(G,A)→ Hq(H,A)
cor : Hq(H,A)→ Hq(G,A)

and proves that cor ◦ res = [G : H] (§VII.7, Prop. 6). If p is prime to [G : H], then this map is
injective; for G profinite, use the finite quotients and pass to the limit. Thus cdp(G) ≤ cdp(H). This
proves equality in the case (2).

For case (1), if cdp(G) = q, then that by the above, Hq(G,MG
H (A)) = Hq(H,A), so we have a map

Hq(G,MG
H (A))→ Hq(H,A) cor−−→ Hq(G,A)

that is in fact induced by the canonical trace map MG
H (A)→ A. Thus next term in the long exact

sequence in cohomology is Hq+1, which is 0, so again cdp(G) ≤ cdp(H).

Corollary 198. If G is profinite and G(p) is a p-Sylow subgroup of G, then cdp(G) = cdp(G(p)).

Proof. G(p) is a closed pro-p-group in G, and its index is prime to p.

Proposition 199. Let 1 → H → G → G/H → 1 be an exact sequence with G profinite, H closed
in G (and thus profinite). Then cdp(G) ≤ cdp(H) + cdp(G/H).

Proof. (Sketch) Spectral sequence. The sequence Hi(G/H,Hj(H,A)) converges to Hi+j(G,A). So
for q ≥ cdp(H)+cdp(G/H), if i+ j = q then i > cdp(G/H) or j > cdp(H) so Hi(G/H,Hj(H,A)) =
0.

Example 200. cdp(Ẑ) = 1. Clearly it is at least 1, since Ẑ � Z/pZ.. Now, H2(Ẑ, A) parameterizes Why does this
show H1 6= 0?extensions E of Ẑ, but any sequence

0→ A→ E
p−→ Ẑ→ 0

splits. For we can define a section s : Ẑ → E of p by defining its value on 1 (since Z is dense in Ẑ).
Again because of density, the map is clearly continuous. Thus H2(Ẑ, A) = 0 for all A.

Note that this shows that if K is a finite field, then cdp(GK) = 1.
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Remark 201. H2(Ẑ,Z) = Q/Z where Ẑ acts trivially on Z. To see this, take the long exact
sequence in cohomology of 0→ Z→ Q→ Q/Z:

· · ·H1(Ẑ,Q)→ H1(Ẑ,Q/Z)→ H2(Ẑ,Z)→ H2(Ẑ,Q)→ · · ·

Now, for G profinite, Hi(G,Q) = 0 for all i, since Hi(G,Q) = lim−→Hi(G/H,Q) where H ranges over
open subgroups of finite index. But then G/H is finite, so that Hn(G/H,Q) is killed by |G/H| (this
is a standard fact about cohomology of finite groups). But Hn(G/H,Q) also has the structure of a
vector space over Q, so must be zero.

Thus the term on each end is zero, so that H1(Ẑ,Q/Z) ∼= H2(Ẑ,Z). But H1(Ẑ,Q/Z) is simply
continuous maps Ẑ → Q/Z; such a map is determined by the image of 1, so the cohomology is Q/Z.
This example of course does not violate the above theorems since Z is not torsion.

Example 202.

cdp(GR) = cdp(Z/2Z) =

{
0 p 6= 2
∞ p = 2

since for p 6= 2, H2(G,A) is killed by 2 and by pn so is zero for n ≥ 1, while for p = 2, H1 6= 0 and
all odd cohomologies are equal and all even cohomologies are equal.

Also, trivially, cdp(GC) = 0.

We will show that for K a p-adic field, cdp(GK) = 2.

7.3 Galois Cohomology

Theorem 203. Let K be a field. TFAE:

1. cdp(GK) ≤ 1

2. For all algebraic extensions L/K, Br(L)[p] = 0 where Br(L) is the Brauer group.

Definition 204. If L is a field, the Brauer group Br(L) =df H
2(GL, L̄∗).

Note that H1(GL, L̄∗) = 0 by Hilbert 90.

Lemma 205. Let µn denote the nth roots of unity in L̄∗, with its GL action. Assume charL = 0
(the result holds in general, but is simpler to prove in this case, and characteristic zero is what we
need anyway). Then H2(GL,µn) = Br(L)[n].

Proof. Note that µn
∼= Z/nZ with a nontrivial GL action.

The proof uses the “Kummer exact sequence”

1→ µn → L̄∗ → L̄∗ → 1

where the map L̄∗ → L̄∗ : z 7→ zn is surjective since L is algebraically closed. This map is compatible
with the GL action. The long exact sequence in cohomology is then

· · · → H1(GL, L̄∗)→ H1(GL, L̄∗)→ H2(GL,µn → H2(GL, L̄∗)→ H2(GL, L̄∗)→ · · ·

The last two groups in this sequence are Br(L), and the map between them is z 7→ zn, so the kernel
of the map is Br(L)[n]. H1(GL.L̄∗) = 0 by Hilbert 90, and the result follows.
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Proof. (of Theorem ??):
(2) ⇒ (1): Let GL be a p-Sylow subgroup of GK (to do this, take a p-Sylow subgroup, which is
closed, and let L be its fixed field). Then H2(GL,µp) = H2(GL,Z/pZ) since the action of GL on
µp is trivial on Z/pZ. The left-hand side is zero by assumption, so the right-hand side is as well. Don’t really

follow this.Thus cdp(GL) ≤ 1 so that cdp(GK) ≤ 1.

(1) ⇒ (2): This is clear: cdp(GK) ≤ 1⇒ cdp(GL) ≤ 1⇒ H2(GL,µp) = 0.

Definition 206. Let K be a field, A a finite K-algebra (associative with unity, but not necessarily
commutative). A is central if Z(A) = K, and simple if A has no two-sided ideals except for 0 and
A. An algebra that is both central and simple is called a central simple algebra, or CSA.

Example 207. Mn(K) is simple, since if X ∈Mn(K) it is a standard result of linear algebra that
any matrix in Mn(K) can be written as AXA for some A ∈Mn(K).

If D is a finite division algebra over K, then Z(D) = K so D is central.

Putting these two together, we have that Mn(D) is a CSA.

There are several important facts about CSAs, none difficult to prove:

1. All central simple algebras are Mn(D) for some finite division algebra D over K.

2. If A,B are two CSAs over K, then A ⊗K B is also a CSA over K (note that the ideals of
A⊗K B are of the form IA ⊗K IB).

3. The set of all CSAs over K up to the equivalence relation D ∼Mn(D) for each n is an abelian
group under ⊗. To show this, one must check that the notion is well-defined (Mn(D) ⊗
Mn(D′) = Mn(D⊗D′), that it is commutative and associative (easy), and that inverses exist.
If D is a CSA, its inverse is the opposite algebra Dopp obtained by reversing multiplication;
then D ⊗Dopp ∼= Mn(K).

4. This group is canonically isomorphic to Br(K).

5. Any CSA has dimension n2 over K for some n. If L/K is an extension of fields and A a
CSA over K, then A ⊗K L = AL is a CSA over L, and A 7→ AL gives a restriction map
res : Br(K)→ Br(L).

6. It follows that over K̄, every CSA is trivial (i.e. is Mn(K̄) for some n since GK̄ is trivial and
we have a description of the Brauer group in terms of the cohomology of GK̄ .

7. Every division algebra D central over K contains a field L of dimension
√

[D : K], and DL
∼=

Mn(L). It is also an amazing fact that any field of degree
√

[D : K] over K embeds in D. For
example, K = R; the CSAs over R are R,H, so Br(R) = Z/2Z. In H, the field L is of course
C, and H⊗R C = M2(C).

8. Br(K)[n] is represented by a CSA of dimension n2.

Theorem 208. If [K : Qp] <∞, then:

1. cdp(GK) = 2

2. cdp(GKnr) = 1
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Proof. Consider the exact sequence

1→ GKnr → GK → Ẑ→ 1

It follows from Proposition ?? that cdp(GK) ≤ cdp(GKnr) + 1. Thus (2) implies that cdp(GK) ≤ 2,
which is the hard part (a “dévissage argument”).

To prove (2), it suffices to show that Br(L) = 0 for all L/Knr algebraic. This follows from

Lemma 209. Let K/Qp be a finite extension, A a CSA over K. Then there is an unramified finite
extension K ′/K such that AK′ is trivial (note that the existence of a finite extension is trivial since
we know that A is trivial over K̄ and it is finite over K.)

(2) follows from the lemma, since if A is a CSA over L, then there is some K ⊂ L, K finite over Qp,
and AK a CSA over K, such that AK ⊗L L = A. To see this, look at the matrix of A; these are all
in some finite extension of Qp. Choose K ′ ⊂ Knr (by the lemma) such that AK ⊗K ′ is trivial; since
K ′ ⊂ Knr ⊂ L, AL is also trivial, so that Br(L) = 0.

Proof. (of lemma): Let D be a central division algebra over K. Claim there is a nontrivial unramified
extension K ′/K with K ′ ⊂ D. The proof is by contradiction; assume there are no such nontrivial
unramified extensions. Let B be the ring of integers of D (i.e. the elements integral over K), and
choose x ∈ B. Then K[x] ⊂ D is a commutative subalgebra of D finite over K, and it is a domain,
so it is a field and a finite extension of K. Thus it is totally ramified (otherwise it would have a
subfield properly containing K that was unramified over K). So K[x] and K have the same residue
field. If πK is a uniformizer for K, we then have for some xi ∈ OK , yi ∈ B

x = x0 + πKy1

= x0 + πKx1 + π2
Ky2

= x0 + πKx1 + π2
Kx2 + π3

Kx3

= · · ·

Thus x is a limit of elements of OK , so x ∈ OK and thus B ⊂ OK . But D is the quotient of integral
elements by elements of K; contradiction proving the claim.

Assume [D : K] = n2, and consider D ⊗K ′ = DK′ ⊃ K ′ ⊗K ′ since D ⊃ K ′. Then DK′ is not a
division ring, but is a CSA, so DK′ = Mk(D′) for k > 1, so that [D′ : K ′] < n2. By (decreasing)
induction, we are done.

We have thus shown that cdp(GKnr) ≤ 1. It is nonzero since the pro-p-Sylow subgroups have
nontrivial H1. It follows that cdp(GK) ≤ 2. It also follows that Why is this

true?
Corollary 210. Br(K) = Q/Z.

Proof. H2(GK , K̄∗) = H2(Gal(Knr/K), (Knr)∗) = H2(Ẑ,O∗Knr × Z). Now, H2(Ẑ,O∗Knr) = 0 since Why
cohomology is
zero?

O∗Knr is a sequence of extensions of Knr, and we know that H2(Ẑ,Z) = Q/Z.

But this implies that cdp(GK) = 2 since the torsion of Br(K) is nonzero. ?

We can now explicitly compute cohomology for local fields using duality:

Hn(G,A) = H2−n(G,A∗ ⊗ ωp)

This gives us H2 since we know H0, and the Euler characteristic formula can be used to get H1 (see
below).
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Proposition 211. If A is a finite GK-module then Hn(GK , A) is finite.

Lemma 212. Let ` be a prime. Let A = µ` be the `th roots of 1 in K̄; A is a cyclic group of order
`. Assume also that A ⊂ K so that the Galois action of GK on A is trivial. (We can get into this
setup by taking a finite extension of K). Then Hm(GK , A) is finite, and∣∣H0(GK , A)

∣∣ = `∣∣H2(GK , A)
∣∣ = `∣∣H1(GK , A)

∣∣ =

{
`2 ` 6= p

`2+[K:Qp] ` = p

Proof. (of Proposition ?? assuming Lemma ??):
Since A is finite, GK acts on A through finite quotient, so there is some K ′/K finite and normal
such that G′K acts trivially on A. We may assume wlog that K ′ contains all the |A|th roots of unity.

As a GK-module, A is the direct sum Z/`nii Z for i in some finite index set I and `i prime. In
particular, A is a successive extension of Z/`iZ = µli as G′K modules, since the action is trivial.
(Recall that we think of Z/`Z as having trivial Galois action and µ` as having cyclotomic action.
They are the same abelian group, but different Galois modules. It’s just notation). By the lemma,
Hm(G′K ,µli

) is finite and thus Hm(G′K , A) is finite by the LES of cohomology.

Finally, by the Hochshcild-Serre spectral sequence,

Hi(Gal(K ′/K), Hj(G′K , A))⇒ Hi+j(GK , A)

and all the left sides are finite, so the limit of the spectral sequence is also finite.

Proof. (of Lemma ??):
H0(GK ,µ`) = H0(GK ,Z/`Z) = Z/`Z since H0 is just the invariants and the action is trivial.

From a previous proposition, H2(GK ,µ`) = Z/`Z.

Finally, since the Artin map sends K∗ ↪→ Gab
K with dense image,

H1(GK ,µ`) = H1(GK ,Z/`Z) = Homcont(GK ,Z/`Z) = cHomcont(Gab
K ,Z/`Z) = Homcont(K∗,Z/`Z)

But K∗ = πZ
K×O∗K = πZ

K×F∗K×(1+πKOK) where FK is the residue field. Note that the last factor
is not necessarily isomorphic to OK additively (this depends on the ramification of K, which affects
the convergence of exp), but in any case it is isomorphic to an open subgroup of OK ∼= Z[K:Qp]

p . So
to count up components of Homcont(K∗,Z/`Z), we get one Z/`Z from πZ

K and one from F∗K since
all the roots of unity are in K. If ` 6= p, the final factor contributes 0, while if ` = p, it contributes
`[K:Qp].

Note that the above proof for H1 uses class field theory, while the proof for H2 uses the Brauer
group - which, in the end, also uses class field theory.

7.4 Pontrjagin Duality

Definition 213. Let A be a finite abelian group. The Pontrjagin dual of A is

A∗ = Hom(A,Q/Z)

or, equivalently, Hom(A,C∗) since A is finite.
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A is canonically isomorphic to A∗∗ via a 7→ (f 7→ f(a)), i.e. evaluation at a. A is non-canonically
isomorphic to A∗.

Definition 214. If B ⊂ A is a subgroup, then B⊥ := {f ∈ A∗ | f(b) = 0} ⊂ A∗.

Proposition 215. If B ⊂ A is a subgroup, then (1) B⊥ ∼= (A/B)∗, (2) |B| ×
∣∣B⊥∣∣ = |A|, and (3)

B⊥
⊥

= 0.
proof?

Proof.

If A has a GK-action, then A∗ does as well, via

(g · f)(a) = f(g−1 · a)

Theorem 216. (Pontrjain duality theorem) [Tate, Poitu; this proof is Serre/Groth; there is another
proof using Fontaine theory as well]
Let I = lim−→r→∞ µr (as an abelian group, I ∼= Q/Z); note that I has a nontrivial GK action. Then

Hn(GK , A)∗ ∼= H2−n(GK , A∗ ⊗ I)

canonically, for n = 0, 1, 2 and all finite GK-modules A.

Duality theorems are always hard to prove. The proof below is from Serre/Groth, and may have
originated with Grothendieck.

Proof. We first prove the case n = 2. Consider the contravariant functor A → H2(GK , A)∗ from
finite abelian GK-modules to finite abelian groups. Since cdp(GK) = 2, we see that H2 is right
exact, so this functor is left exact. Those categories are Noetherian, so we have Grothendieck’s
pro-representability theorem (see Serre, Galois Cohomology), except that since the functor is con-
travariant we get an ind-represented functor: we get that there is an I = lim−→Bα for finite GK
modules Bα (I is therefore a torsion GK module) such that H2(GK , A)∗ ∼= HomGK (A, I). These
are just the invariants of GK in A∗ ⊗ I, which is H0(A∗ ⊗ I).

We know that H2(GK ,µr) = Z/rZ for all r, so (Z/rZ)∗ = HomGK (µr, I) in the case of a trivial
GK action (this is the definition of the Pontrjagin dual). But one can reduce to this case by taking
a finite extension of K to kill the GK action. But this implies that I = lim−→µr and is unique by implication is

exerciseYoneda’s lemma. This concludes the proof for n = 2.

Next note that I⊗Z I
∗ = Q/Z with trivial GK action. For A a finite GK module, write A′ = A∗⊗ I.

Then as GK modules, A′′ = A (this is not formal; it is a particular property of this GK module I).

Then for n = 0, we have H0(GK , A)∗ = H0(GK , A′′)∗ = H(GK , A
′) as desired.

For n = 1, since A is finite, there are finite modules B,C such that 0 → A → B → C → 0 for B
cohomologically trivial for n ≥ 1 (for example, take B to be the induced module of A). The primed
sequence 0 → C ′ → B′ → A′ → 0 is also exact since the ′ operator is an involution. We thus get a
map of long exact sequences in cohomology

. . . H0(GK , B)

��

→ H0(GK , C)

��

→ H1(GK , A)

��

→ H1(GK , B) = 0

. . . H2(GK , B′)∗ → H2(GK , C ′)∗ → H1(GK , A′)∗ → 0
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The first two vertical arrows are isomorphisms by the duality already proved, so by a diagram
chase, the rightmost vertical arrow is injective. Applying this to A′, A′′, we get that the dual of
the rightmost vertical arrow is injective so that the map in question is also surjective and thus an
isomorphism. The map is canonical as can be seen by looking at the cup product.

7.5 Euler Characteristic Formula

The Euler characteristic formula can be used to actually compute cohomology given the duality
formulas just proved.

Definition 217. If {Ai}i∈Z are finite abelian groups (or finite dimensional vector spaces over a field
L) that are 0 for all but finitely many i, then we define the Euler characteristic

χ((Ai)i∈Z) =
∏
i∈Z
|Ai|(−1)i

χ((Ai)i∈Z) =
∏
i∈Z

(−1)i dimLAi

respectively.

(Note that these definitions are the same thing, via the log map, if L = Fp, say).

Now if we have a complex · · · → Ai−1 → Ai → Ai+1 → . . . with

Hi = ker(Ai → Ai+1)/ im(Ai−1 → Ai)

its cohomology, then we have χ((Ai)) = χ((Hi)). The proof of this is easy; you get a telescoping
sum and use the rank theorem from linear algebra. Note that the Hi are finite abelian groups if the
Ai are and are finite dimensional vector spaces if the Ai are.

Definition 218. If A is a finite GK module, define

χ(A) = χ((Hi(GK , A))) =

∣∣H0(GK , A)
∣∣ · ∣∣H2(GK , A)

∣∣
|H1(GK , A)|

= χ((IGKi ))

for A→ I0 → I1 → . . . an injective resolution.

Proposition 219. If 0 → A → B → C → 0 is a short exact sequence of GK modules, then
χ(B) = χ(A)χ(C).

Proof. By the long exact sequence in cohomology. The LES is exact, so its cohomology is zero.
By the previous proposition, χ(LES) = χ(cohomologyofLES) = 1, and examining the long exact
sequence, we see that χ(LES) = χ(A)χ(C)/χ(B). or its reciprocal

In general, the Euler characteristic tends to be very invariant.

Theorem 220. Let A be a finite GK module. Then χ(A) = ||A||K where |·|K is the normalized (for
the product formula) norm in K - that is,

∣∣NK/Qp(·)
∣∣
Qp

.

Proof. (Sketch) Proved by Tate, Poitu, Fontaine. Note first that if |A| =
∏
` prime `

n` , then χ(A) =
p−np[K:Qp]. Start with any A and reduce to the case A = Z/`Z with the trivial action using the
spectral sequence. We are then in the case of the lemama from before, so we get either `2/`2 (if
` 6= p) or l2/(l2+[K:Qp]) (if ` = p).
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Using this theorem, if M is a torsion module, we can compute H0(GK ,M) easily, get H2(GK ,M)
by duality, and then compute H1(GK ,M) from the theorem.

Corollary 221. If V is an `-adic continuous representation of GK for K,L finite over Qp, then

1. dimLH
n(GK , V ) <∞

2. Hn(GK , V )∗ ∼= H2−n(GK , V ∗(1)) (the Tate twist - tensor with ωp)

3. dimH0(GK , V )− dimH1(GK , V ) + dimH2(GK , V ) = (dimL V ) · [K : Qp]

Proof. V has a stable lattice, which is the limit of finite modules. Use a previous theorem of Tate which theorem?

to transfer the results we’ve already done for finite modules.

Definition 222. If A is a finite GK module, we say that A is unramified if IK acts trivially on A.
If A is unramified, define Hn

ur(GK , A) = Hn(GK/IK , A).

Proposition 223.

1. H0
ur(GK , A) = H0(GK , A)

2. H1
ur(GK , A) = ker(H1(GK , A)→ H1(IK , A)) under the restriction map

3. H2
ur(GK , A) = 0

4.
∣∣H1

ur(GK , A)
∣∣ =

∣∣H0(GK , A)
∣∣

5. If p - |A|, then H1
ur(GK , A)⊥ ⊂ H1(GK , A)∗ ∼= H1(GK , A′) ⊃ H1

ur(GK , A
′); viewed as sub-

spaces of the same space under those maps, the first and last spaces are the same.

Proof. (1) is obvious. (2) follows from the inflation-restriction exact sequence. (3) holds because
GK/IK ∼= Ẑ, which has cohomological dimension 1. (4) is a computation what

computation?
Finally, assume p - |A|. If A is unramified, so is A′. We have H1

ur(GK , A) ⊗ H1
ur(GK , A

′)
cup−−→ “⊗I ...

cyclotomic”H2
ur(GK , I) = 0, so that H1

ur(GK , A)⊥ ⊃ H1
ur(GK , A

′). To see they have the same cardinality, we
have by the above ∣∣H1

ur(GK , A
′)
∣∣ =

∣∣H0(GK , A)
∣∣ =

∣∣H2(GK , A)
∣∣

and ∣∣H1
ur(GK , A)⊥

∣∣ =

∣∣H1(GK , A)
∣∣

|H1
ur(GK , A)|

=

∣∣H1(GK , A)
∣∣

|H0(GK , A)|
and these are equal since χ(A) = 1 because |A| is prime to p.

7.6 Global Galois Theory

Let [K : Q] be a finite extension.

Theorem 224. cdp(GK) = 2 unless p = 2 and K has a real place. In this case, cd2(GK) =∞.

Proof. (Sketch) The second statement follows since cd(Z/2Z) =∞. For the first statement, use the
same argument as in the local case: find L/K such that Gal(L/K) ∼= Ẑ and argue as before using
the Brauer group.
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Remark 225. There is no finiteness result for number fields. For example, H2(GK ,µn) = Br(K)[n] =
⊕pZ/pZ.

The right group to look at is GK,S where S is a finite set of places.

Theorem 226. cdp(GK,S) ≤ 2 for p 6= 2.
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8 Appendix - Topological Groups

A topological group G is a topological space together with a group structure in which multiplication
and inverse are continuous maps. G is often assumed Hausdorff in the topology.

Proposition 227. Let G be a topological group and H a subgroup. Then

1. If H is open, then it is closed.

2. If G is compact and H is open, then H is of finite index.

3. If H is closed and of finite index, then it is open.

4. The connected component of 1 ∈ G is a subgroup.

5. If G is connected, then its only open subgroup is G itself.

6. If H ⊂ G contains an open set, then H is open.

Proof. (1) follows by noting thatH together with its (open) cosets coversG, andH is the complement
of the union of all the cosets except for H itself, so is the complement of an open set.

(2): The collection of cosets of H is a cover of G by disjoint open sets, so removing any coset results
in a non-cover. Since G is compact, the number of cosets must be finite.

(3): This is the same argument as for (1): H is the complement of the union of all its cosets other
than H itself; this is a finite union of closed sets, so its complement H is open.

(4): Let H be the connected component of 1, and consider the map G → G : x 7→ x−1, restricted
to H. Clearly the image is connected, but also contains 1, so is contained in H. Similarly, the
restriction of multiplication to H, H × H → G : (x, y) 7→ xy, has connected image containing 1.
Thus H is a subgroup.

(5): Let H be the connected component of the identity; its cosets form a disjoint open cover of G.
Since G is connected, there can be only one coset and H = G.

(6): Suppose H contains an open set U around h ∈ H. Then if y ∈ H, we have that yh−1U ⊂ is an
open set in H containing y.

Finite index does not imply either closed or open. However, it was recently shown that if a profinite
group is topologically finitely generated (i.e. has a finitely generated subgroup that is dense), then
finite index implies open (implies closed).

Note that the only closed subgroups of R are the groups aZ for a ∈ R. There are no proper open
subgroups. (In fact, any closed subgroup of Rn is isomorphic to something like free abelian groups
on k ≤ n generators.)

Note that Zp is Hausdorff: given any two distinct integers, choose n so that the integers are not
congruent mod pn. Then the balls of radius pn around the integers are disjoint.

Any locally compact group has a Haar measure, which is a (left- or right-) invariant measure.

Locally compact abelian groups have a nice theory that generalizes Fourier analysis. If G is locally
compact abelian, define G∗ to be the group of homomorphisms G→ S1; this is also a locally compact
abelian group, and there is a natural isomorphism G∗∗ ∼= G. Then any function G → C can be
written as a sum of functions in the dual group G∗; for R, this is simply Fourier series.
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