
The Konvalinka-Amdeberhan conjecture
and plethystic inverses

Ira M. Gessel

Department of Mathematics
Brandeis University

Brandeis Combinatorics Seminar

November 15, 2016



Tanglegrams

A binary tree is an unordered binary tree with labeled leaves
and unlabeled internal vertices:
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An ordered pair of trees sharing the same set of leaves is
called a tanglegram. (The term comes from biology.)
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which we can also draw as
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Sara Billey, Matjaž Konvalinka, and Frederick A. Matsen IV
wanted to count unlabeled tanglegrams

which may defined formally as orbits of tanglegrams under the
action of the symmetric group permutating the labels on the
leaves.



Burnside’s Lemma

To count orbits, we use Burnside’s Lemma: If a group G acts on
a set S then the number of orbits is

1
|G|

∑
g∈G

fix(g),

where fix(g) is the number of elements of S fixed by G. It’s not
hard to show that fix(g) depends only on the conjugacy class
of g.



In the case of the symmetric group Sn, the conjugacy classes
correspond to cycle types, which are indexed by partitions of n.
If λ = (1m12m2 · · · ) is a partition of n then the number of
elements of Sn of cycle type λ is n!/zλ, where
zλ = 1m1m1! 2m2m2! · · · .

If we define fix(λ) be fix(g) for any g ∈ Sn of cycle type λ, then
we may write Burnside’s sum for Sn as

1
n!

∑
λ`n

fix(λ)
n!

zλ
=
∑
λ`n

fix(λ)

zλ
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Now let rλ be the number of binary trees fixed by a permutation
of cycle type λ. Then the number of unlabeled binary trees on n
vertices is ∑

λ`n

rλ
zλ
.

To count unlabeled tanglegrams, we need to count ordered
pairs of trees fixed by a permutation.

But an ordered pair (T1,T2) of binary trees is fixed by a
permutation π if and only if T1 and T2 are both fixed by π. So
the number of ordered pairs of binary trees fixed by a
permutation of cycle type λ is r2

λ .

So the number of unlabeled tanglegrams with n leaves is

∑
λ`n

r2
λ

zλ
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Tangled chains

Billey, Konvalinka, and Matsen define a tangled chain of length
k to be a k -tuple of binary trees sharing the same set of leaves.

By the same reasoning, the number of unlabeled tangled
chains of length k with n leaves is

∑
λ`n

r k
λ

zλ
.



A formula for rλ

Billey, Konvalinka, and Matsen found a remarkable formula
for rλ:
rλ is zero if λ is not a binary partition (a partition in which every
part is a power of 2), and if λ is a binary partition,
λ = (λ1, λ2, . . . , λk ) where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1, then

rλ =
k∏

i=2

(
2(λi + · · ·+ λk )− 1

)
.

For example, r(4,2,1) = [2 · (2 + 1)− 1](2 · 1− 1) = 5 · 1 = 5.

The total number of of binary trees with n leaves is

r(1n) = 1 · 3 · · · (2n − 3).
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Billey, Konvalinka, and Matsen proved the formula for rλ by
showing that the product satisfies the same recurrence as rλ.

Later, a direct combinatorial proof was found by Eric Fusy.

But the formula is still somewhat mysterious.
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The Konvalinka-Amdeberhan conjecture
Matjaž Konvalinka and Tewodros Amdeberhan (independently)
looked at what happens in this formula if we replace 2 by some
other number.

They found a nice conjecture for replacing 2 with
a prime:

Let q be a prime. We say that a partition λ is q-ary if every part
of λ is a power of q. Define rλ,q by

rλ,q =

{
0, if λ is not q-ary∏l(λ)

j=2(qλj + qλj+1 + · · ·+ qλl(λ) − 1) if λ is q-ary

(Here l(λ) is the number of parts of λ.)

The Konvalinka-Amdeberhan Conjecture: For every positive
integer k , ∑

λ`n

r k
λ,q

zλ

is an integer.



The Konvalinka-Amdeberhan conjecture
Matjaž Konvalinka and Tewodros Amdeberhan (independently)
looked at what happens in this formula if we replace 2 by some
other number. They found a nice conjecture for replacing 2 with
a prime:

Let q be a prime. We say that a partition λ is q-ary if every part
of λ is a power of q. Define rλ,q by

rλ,q =

{
0, if λ is not q-ary∏l(λ)

j=2(qλj + qλj+1 + · · ·+ qλl(λ) − 1) if λ is q-ary

(Here l(λ) is the number of parts of λ.)

The Konvalinka-Amdeberhan Conjecture: For every positive
integer k , ∑

λ`n

r k
λ,q

zλ

is an integer.



The Konvalinka-Amdeberhan conjecture
Matjaž Konvalinka and Tewodros Amdeberhan (independently)
looked at what happens in this formula if we replace 2 by some
other number. They found a nice conjecture for replacing 2 with
a prime:

Let q be a prime. We say that a partition λ is q-ary if every part
of λ is a power of q. Define rλ,q by

rλ,q =

{
0, if λ is not q-ary∏l(λ)

j=2(qλj + qλj+1 + · · ·+ qλl(λ) − 1) if λ is q-ary

(Here l(λ) is the number of parts of λ.)

The Konvalinka-Amdeberhan Conjecture: For every positive
integer k , ∑

λ`n

r k
λ,q

zλ

is an integer.



The Konvalinka-Amdeberhan conjecture
Matjaž Konvalinka and Tewodros Amdeberhan (independently)
looked at what happens in this formula if we replace 2 by some
other number. They found a nice conjecture for replacing 2 with
a prime:

Let q be a prime. We say that a partition λ is q-ary if every part
of λ is a power of q. Define rλ,q by

rλ,q =

{
0, if λ is not q-ary∏l(λ)

j=2(qλj + qλj+1 + · · ·+ qλl(λ) − 1) if λ is q-ary

(Here l(λ) is the number of parts of λ.)

The Konvalinka-Amdeberhan Conjecture: For every positive
integer k , ∑

λ`n

r k
λ,q

zλ

is an integer.



Symmetric functions

To prove the Konvalinka-Amdeberhan conjecture, we need
some facts about symmetric functions.

Symmetric functions are formal power series in the variables
x1, x2, . . . that are symmetric under any permutation of the
subscripts.

The symmetric functions that are homogeneous of degree n
form a vector space Λn whose dimension is the number of
partitions of n.

There are several important bases for Λn, indexed by partitions
of n, but we only need three of them.
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First, the monomial symmetric functions: If λ = (λ1, λ2, . . . , λk )
then mλ is the sum of all distinct monomials of the form

xλ1
i1
· · · xλk

ik
.

Next, the power sum symmetric functions are defined by

pn =
∞∑

i=1

xn
i

and pλ = pλ1pλ2 · · · pλk .

Finally, the complete symmetric functions

hn =
∑

i1≤···≤in

xi1 · · · xin .

and hλ = hλ1hλ2 · · · hλk .



Integral symmetric functions

A symmetric function is called integral if its coefficients are
integers. (This is equivalent to its coefficients being integers in
the monomial basis, or any of the other common bases except
for the power sum basis.)

For example 1
2p2

1 + 1
2p2 is integral because it is equal to∑
i≤j

xixj = m(2) + m(1,1).

If f is an integral symmetric function expressed in terms of the
pλ, then setting each pn to 1 gives an integer, since setting
each pn to 1 is equivalent to setting x1 = 1, xi = 0 for i > 1.
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The Kronecker product

Next we define the operation of Kronecker product on
symmetric functions. It is defined by

pλ ∗ pµ = zλδλ,µ pλ

and linearity.

(It corresponds to tensor products of Sn
representations.)

Theorem. If f and g are integral symmetric functions then so is
f ∗ g.
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Konvalinka-Amdeberhan symmetric functions

We can generalize the Konvalinka-Amdeberhan conjecture to
prime powers. Let m be a power of the prime q and define the
symmetric function

um(n, α) =
∑
λ q̀ n

pλ
zλ

α

l(λ)∏
j=2

(mλj + mλj+1 + · · ·+ mλl(λ) + α),

Here λ q̀ n means that n is a q-ary partition.

Main Theorem. For any integer α, um(n, α) is an integral
symmetric function.

The Konvalinka-Amdeberhan conjecture follows from this
theorem, since the Konvalinka-Amdeberhan number∑

λ`n r k
λ,q/zλ is obtained by setting each pλ to 1 in the

Kronecker power [−uq(n,−1)]∗k .
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Let

Fm(α) =
∞∑

n=0

um(n, α),

where um(0, α) = 1.

Let’s look at what happens if we set p1 = x and pi = 0 for i > 1.
(This is a standard way of getting an exponential generating
function from a symmetric function.)

So the only partitions λ that contribute are λ = (1n).



Let

Fm(α) =
∞∑

n=0

um(n, α),

where um(0, α) = 1.

Let’s look at what happens if we set p1 = x and pi = 0 for i > 1.
(This is a standard way of getting an exponential generating
function from a symmetric function.)

So the only partitions λ that contribute are λ = (1n).



Let

Fm(α) =
∞∑

n=0

um(n, α),

where um(0, α) = 1.

Let’s look at what happens if we set p1 = x and pi = 0 for i > 1.
(This is a standard way of getting an exponential generating
function from a symmetric function.)

So the only partitions λ that contribute are λ = (1n).



Then for λ = (1n) we have pλ/zλ = xn/n! and

α

l(λ)∏
j=2

(mλj + mλj+1 + · · ·+ mλl(λ) + α)

= α(m + α)(2m + α) · · · ((n − 1)m + α)

Then Fm(α) becomes

∞∑
n=0

α(m + α)(2m + α) · · · ((n − 1)m + α)
xn

n!
=

1
(1−mx)α/m .

So it seems that Fm(α) is a kind of symmetric function binomial
expansion. In fact, we will see that Fm(α) = Fm(1)α.
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Plethysm

In order to describe the equation that Fm(α) satisfies, we need
a kind of composition of symmetric functions called plethysm.
Let f and g be symmetric functions. The plethysm of f and g is
denoted f [g] or f ◦ g.

First suppose that g can be expressed as a sum of monic
terms, that is monomials xα1

1 xα2
2 . . . with coefficient 1.

In this case, if g = t1 + t2 + · · · , where the ti are monic terms,
then

f [g] = f (t1, t2, . . . ).

We can give a different characterization of plethysm when f and
g are expressed in terms of power sums. First, pj [g] is the
result of replacing each pi in g with pij . Then f [g] is obtained by
replacing each pj in f with pj [g].
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It is not hard to show that plethysm is associative and
preserves integrality.

If f is a symmetric function of the form

p1 + higher order terms

then f has a unique plethystic inverse of the same form, which
we write as f [−1], satisfying

f ◦ f [−1] = f [−1] ◦ f = p1.

If f is integral then so is f [−1].
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Now let’s look at the cycle index for binary trees,

ZR :=
∑
λ

rλ
pλ
zλ
.

One can show (e.g., using the theory of combinatorial species)
that ZR satisfies the plethystic equation

ZR = p1 + h2[ZR].

Here h2 is the complete symmetric function

h2 =
∑
i≤j

xixj = 1
2p2

1 + 1
2p2.

This is the symmetric function refinement of the exponential
generating function equation

B(x) = x + B(x)2/2.
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We can get the formula of Billey, Konvalinka, and Matsen by
rewriting it in a particular way and applying the binomial
theorem iteratively.

We let g = 1− ZR and we rearrange the equation

ZR = p1 +
1
2

(p2
1 + p2)[ZR]

into g2 = p2[g]− 2p1. Then taking square roots gives us

g = (p2[g]− 2p1)1/2.

(It’s not obvious that this is the right thing to do!)

We can use this formula to get an explicit formula for the
expansion of g, or more generally, of g−α in power sums.
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Applying the binomial theorem gives

g−α = (p2[g]−2p1)−α/2 =
∞∑

m1=0

(−2)m1

(
−α/2

m1

)
pm1

1 p2[g]−α/2−m1

Now from g = (p2[g]− 2p1)1/2 we get p2[g] = (p4[g]− 2p2)1/2

so

g−α =
∞∑

m1=0

(−2)m1

(
−α/2

m1

)
pm1

1 (p4[g]− 2p2)−α/4−m1/2

=
∞∑

m1,m2=0

(−2)m1+m2

(
−α/2

m1

)(
−α/4−m1/2

m2

)
× pm1

1 pm2
2 p4[g]−α/4−m1/2−m2 .
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Continuing in this way, we get the expansion of g−α into powers
of p1,p2,p4,p8, . . .

We can rearrange the binomial coefficients to get

g−α = F2(α) =
∞∑

n=0

∑
λ`2n

pλ
zλ
α

l(λ)∏
j=2

(2λj + 2λj+1 + · · ·+ 2λl(λ) + α),

and in particular,

ZR = 1− g =
∞∑

n=1

∑
λ`2n

pλ
zλ

l(λ)∏
j=2

(2λj + 2λj+1 + · · ·+ 2λl(λ) − 1),
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To generalize this, we introduce a well-known symmetric
function

Lm =
1
m

∑
d |m

µ(d)pm/d
d ,

Then Lm counts “primitive necklaces”, and in particular it is
integral. (It also has a number of other applications.) In
particular, if m is a power of a prime q then

Lm =
1
m

(pm
1 − pm/q

q ).



Lemma.

−Lm[1− p1] = p1 + higher order terms.

Therefore −Lm[1− p1] has a plethystic inverse.

Proof. We have

−Lm[1− p1] = − 1
m

∑
d |m

µ(d)pm/d
d [1− p1]

= − 1
m

∑
d |m

µ(d)(1− pd )m/d .

The constant term is − 1
m

∑
d |m

µ(d) = 0. The p1 term comes

from d = 1:

− 1
m

(1− p1)m = − 1
m

(1−mp1 + · · · ) = − 1
m

+ p1 + · · · .
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Now let fm be the plethystic inverse of −Lm[1− p1], so
Lm[1− fm] = −p1. Then fm is integral.

Let gm = 1− fm so that Lm[gm] = p1. If m is a power of the
prime q, then

Lm =
1
m

(pm
1 − pm/q

q ).

so
gm

m − pq[gm]m/q = −mp1,

so
gm = (pq[gm]m/q −mp1)1/m

As before, we can expand by the binomial theorem and iterate
to get the explicit formula gαm = Fm(α) as defined before.
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Summary

Let m be a an integer greater than 1, and let fm be the
plethystic inverse of −Lm[1− p1], where
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Conjectures and Guesses

I conjecture that g−1
m is Schur positive (which implies that g−αm is

Schur positive for α ∈ P) for all m (not just a prime power), and
also that 1− gk

m is Schur positive for k = 1,2, . . . ,m− 1.

(If m is
not a prime power, I don’t even have a proof that these
symmetric functions have positive coefficients.)

One possible way to prove Schur positivity is to find a
symmetric group representation whose characteristic is the
symmetric function in question.

For m = 2 we have a permutation representation that works,
but for m > 2 there does not seem to be such a permutation
representation.
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We can find the degrees of such hypothetical representations
by looking at the exponential generating functions (setting
p1 = x and pi = 0 for i > 1).

We get

g−αm 7→ 1
(1−mx)α/m =

∞∑
n=0

α(m+α)(2m+α) · · · ((n−1)m+α)
xn

n!

1− gk
m 7→

∞∑
n=1

k(m − k)(2m − k) · · · ((n − 1)m − k)
xn

n!

These formulas have combinatorial interpretations in terms of
(m + 1)-ary increasing trees (or equivalently, “generalized
Stirling permutations” or multipermutations), so these might be
correspond to bases for the representations we want, but it’s
not clear how to construct representations from them.
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