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Counting pairs of sequences

In their 1976 paper Enumeration of pairs of sequences by rises,
falls and levels in Manuscripta Mathematica, Leonard Carlitz,
Richard Scoville, and Theresa Vaughan studied pairs of
sequences of integers of the same length according to rises,
falls and levels.
For example suppose the two sequences are

1
2

1
3

2
1

In the first position the first sequence 112 has a level (11), and
the second sequence has a rise (23). So for the pair of
sequences, the specification of the first position is LR, and the
specification of the second position is RF. They wanted to count
pairs of sequences according to the number of RR, FR, LR, . . . ,
LL. A general formula is very complicated so they considered
special cases.



One of their results is the following: Let {A,B} be a partition of
{RR, . . . ,LL}. Then the reciprocal of the generating function for
sequences in which every specification is in A is the generating
function, with alternating signs, of the generating function for
sequences in which every specification is in B.

In the appendix to their paper, they proved a more general
version of this result, which I will state a little differently.
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The Carlitz-Scoville-Vaughan Theorem

Let A be an alphabet, and let R be a relation on A, that is, a
subset of A× A = A2. Let A(R) be the set of words a1 · · · an in
A∗ such that a1 R a2 R · · · R an. Note that the empty word 1
and all words of length one are in A(R). Let R = A2− R.

Then ∑
w∈A(R)

w =

( ∑
w∈A(R)

(−1)l(w)w
)−1

.

Here l(w) is the length of w , and we are working in the ring of
formal power series in noncommuting variables.

Carlitz, Scoville, and Vaughan didn’t do anything more with this
result. But I believe that it should be considered one of the
fundamental theorems of enumerative combinatorics.
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A simple example

Let A = {x , y}, and let R= {xx} and R= {xy , yx , yy}. So A(R)

is the set of words in the letters x and y with no consecutive xx ,
and A(R) is the set of words in which every consecutive pair is
xx . Thus∑

w∈A(R)

(−1)l(w)w = 1− y − x + x2 − x3 + · · · = (1 + x)−1 − y .

Therefore, by the CSV theorem,∑
w∈A(R)

w =
(
(1 + x)−1 − y

)−1

= (1 + x)
(
1− y(1 + x)

)−1
.

Note that if we set y = x , we get a generating function for
Fibonacci numbers.
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Another simple example

Let A = {x1, x2, . . . }, let R= {xixj : i ≤ j}, so R= {xixj : i > j}.

Then the CSV theorem gives

∞∑
n=0

en =

( ∞∑
n=0

(−1)nhn

)−1

,

where
hn =

∑
i1≤···≤in

xi1 · · · xin

is the noncommutative complete symmetric function and

en =
∑

i1>···>in

xi1 · · · xin

is the noncommutative elementary symmetric function.
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Proof of the CSV theorem

I’ll sketch three proofs.

Proof 1. (Essentially the same as Carlitz, Scoville, and
Vaughan’s proof.) We prove that∑

v∈A(R)

(−1)l(v)v ·
∑

w∈A(R)

w = 1.

The left side is ∑
v∈A(R)

∑
w∈A(R)

(−1)l(v)vw .

Every nonempty word that occurs in this sum appears twice,
once with a plus sign and once with a minus sign.



Proof 2. Let us define an R-descent of a word a1a2 · · · an in A∗

to be in i such that ai R ai+1. Let h(R)
n be the sum of all words

of length n with no R-descent, that is, the sum of all words
a1 · · · an for which a1 R a2 R · · · R an. Then the set of words of
length n with a given R-descent set can be expressed by
inclusion-exclusion in terms of the h(R)

n .

For example the sum of the words of length 5 with R-descent
set {3} is h(R)

3 h(R)
2 − h(R)

5 .

In particular, inclusion-exclusion gives the sum of the words in
which every position is an R-descent as

∞∑
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n
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Proof 3. (At least for the commutative version.) Without loss of
generality we may assume that A is finite. The coefficients on
both sides can be expressed as matrix entries by the transfer
matrix method. Then the result follows by matrix algebra. (See,
e.g., Goulden and Jackson’s Combinatorial Enumeration.)



An application: counting words by R-runs

An R-run in a word is a maximal nonempty subword in A(R), so
the R-descents break up a word into R-runs. For a nonempty
word, the number of R-runs is one more than the number of
R-descents.



To count words in A∗ by the number of R-runs, we define a new

alphabet A(R) whose letters are a1a2 . . . an where

a1 · · · an ∈ A(R). Now let R ⊆ A(R) 2
be the set of words of the

form a1 · · · an an+1 · · · an+r where anan+1 ∈R. In other words,

a1 · · · an+r ∈ A(R). Then the CSV theorem allows us to count
words of the form

a1 · · · an1 an1+1 · · · an2 · · · ank−1+1 · · · ank

in which the R-descent set of the word a1 · · · ank is
{n1,n2, . . . ,nk−1}.



To get something useful from this, we apply the homomorphism
that takes a1 · · · an to a1 · · · ant , where t is a variable that

commutes with all the letters. Then the image of h(R)
n under this

homomorphism will be a sum of words a1 · · · an in A(R), each
multiplying by a sum of powers of t corresponding to the ways
in which this word can be cut into nonempty pieces. A word of
length n can be cut in any of the n − 1 spaces between its
letters, so the total coefficient for a word of length n will be
t(1 + t)n−1.

On the other side, we will be counting words in A∗ where a
word with j R-runs will be weighted t j . So applying the CSV
theorem gives

∑
w∈A∗

tR-run(w)w =

(
1− t

∞∑
n=1

(1− t)n−1h(R)
n

)−1

.



More generally, we could assign a different weight to each
possible R-run length. If we assign the weight ti to a run of
length i then the same argument gives

∑
w∈A∗

T (w)w =

(
1 +

∞∑
n=1

unh(R)
n

)−1

,

where T (w) is the weight of w and un counts compositions of n
where each part i is weighted −ti , so

∞∑
n=1

unzn =

(
1 +

∞∑
i=1

tiz i
)−1

.



For example, to count words in which every R-run has length 3,
we set t3 = 1 and ti = 0 for i 6= 3, so u3k = (−1)k and un = 0 if
3 does not divide n, so the sum of all words in which every
R-run has length 3 is ( ∞∑

k=0

(−1)kh(R)
3k

)−1

.

Similarly, the sum of all words in which every run length is odd
is (

1 +
∞∑

k=1

(−1)kFkh(R)
k

)−1

,

where Fk is the k th Fibonacci number.
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Walks in digraphs

What if we we want to count words whose R-runs have the
lengths 2, 3, 2, 3, ...? More generally, we can apply the CSV
theorem to a very general situation: We are given a digraph in
which each edge has a set of positive integers associated to it.
Given two vertices u and v in the graph, we can count words in
A∗ whose sequence of R-run lengths corresponds to the
numbers on a walk from u to v .

In other words, we can count words whose R-run length
sequences are in a regular language.
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For example, the walks from u to v in

u v

2

3

correspond to words in which the sequence of run lengths is 2,
3, 2, 3, . . . , 2.

They are counted by the (1,2) entry of the matrix(
L5,0 −L5,2
−L5,3 L5,0

)−1

where Lm,i =
∑∞

n=0(−1)ih(R)
mn+i .



Walks from u to v in the digraph

u v2 1 3 2

correspond to words in which the sequence of run lengths is 2,
1, 3, 2. This is the (1,5) entry of the matrix

1 −h(R)
2 h(R)

3 −h(R)
6 h(R)

8
0 1 −h(R)

1 h(R)
4 −h(R)

6
0 0 1 −h(R)

3 h(R)
5

0 0 0 1 −h(R)
2

0 0 0 0 1



−1

(The formula we get here is the same as the
inclusion-exclusion formula.)
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Permutations

How can we count permutations by descents (or increasing
runs) rather than arbitrary sequences?

We take A = {1,2, . . . } and R =≤= { (i , j) : i ≤ j }. (We could
identify 1, 2, . . . , with noncommuting variables x1, x2, . . . .)

We apply the linear map that takes a sequence π = a1 · · · an to
zn/n! if π is a permutation of [n] = {1,2, . . . ,n} and to 0 if π is
not of this form.

It is not hard to see that when restricted to the algebra
generated by h(R)

1 ,h(R)
2 , . . . , this is a homomorphism that takes

h(R)
n to zn/n!.

So we can count permutations by replacing h(R)
n with zn/n! in

our formulas.
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For example, our previous formula for counting sequences by
descents, which may be written

∑
w∈A∗

tR-run(w)w = (1− t)
(

1− t
∞∑

n=0

(1− t)n h(R)
n

)−1

gives a generating function for the Eulerian polynomials, which
count permutations by descents:

1− t
1− te(1−t)x



Similarly, we can see that the “doubly exponential” generating
function for pairs (π, σ) of permutations of [n] with no common
ascents is ( ∞∑

n=0

(−1)n xn

n!2

)−1

.



By applying other homomorphisms we can count permutations
by the number of inversions, descent set, number of descents,
major index, or number of peaks of π−1.



Generalizations

Two of my students, Susan Parker and Brian Drake,
generalized the CSV to give a combinatorial interpretation of
the compositional inverse of power series.



Susan Parker’s Theorem (1993)

(Rediscovered by Jean-Louis Loday, 2006)

Examples:

(x − x2)〈−1〉 =
1−
√

1− 4x
2

=
∞∑

k=0

1
k + 1

(
2k
k

)
xk+1

(
x

1 + x

)〈−1〉
=

x
1− x



Define Narayana polynomials by

Nk (a,b) =
k−1∑
i=0

1
k

(
k
i

)(
k

i + 1

)
aibk−i−1.

Then (
x + (a + b)

∞∑
k=1

(−1)kNk (a,b)xk+1
)〈−1〉

= x + (a + b)
∞∑

k=1

Nk (a,b)xk+1



We work with ordered trees in which the leaves have a weight
of x and the internal vertices are labeled a, b, c, . . . . I’ll omit
the leaves in most of my pictures.

A letter is a single internal vertex with a fixed arity (number of
children):

a



A link is a parent and child letter:

a

b



Parker’s Theorem: Given a set of letters, the compositional
inverse of the generating function for trees with a given set of
links is the generating function for trees with the
complementary set of links, with alternating signs.



As a simple example, take the single letter

a

. The trees

using only the link

a

a

look like



a

a

a

x x

x

x

with generating function

∞∑
n=0

anxn+1 =
x

1− ax
.



The complementary trees are the mirror images of these, with
the same generating generating function, and thus(

x
1 + ax

)〈−1〉
=

x
1− ax

,

where the inverse is as power series in x .

The CSV theorem is the special case of Parker’s theorem for
unary trees.
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x
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)〈−1〉
=

x
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,

where the inverse is as power series in x .

The CSV theorem is the special case of Parker’s theorem for
unary trees.



Brian Drake’s Theorem (2008)
(Rediscovered by Vladimir Dotsenko, 2011)

Drake’s theorem gives a similar interpretation for exponential
generating functions corresponding to trees with labeled leaves
and unlabeled internal vertices.

I’ll just give an example of Drake’s interpretation of

(ex − 1)〈−1〉 = log(1 + x).

In other words,( ∞∑
n=1

xn

n!

)〈−1〉
=
∞∑

n=1

(−1)n−1(n − 1)!
xn

n!
.
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The interpretation is that ex − 1 counts trees that look like

1

2

3

4 5

and log(1 + x) counts trees that look like

1 3

5

4

2



Explanation: we label each internal vertex with its least
descendant:

1

1

2

2

3

3

4

4

5 1

1

1

1

1

3

5

4

2

Then all of the letters look like
i

i j
, with i < j .

The ex − 1 trees have “right child” links and the log(1 + x) trees
have “left child” links.



Forbidden subwords

Suppose we want to count words with forbidden subwords of
length greater than 2. We can do this with the Goulden-Jackson
Cluster Theorem.

Let F be a set of “forbidden” words in A∗ all of length at least 2.
A cluster is a word in which an overlapping set of forbidden
subwords is marked. For example, if A = {a} and F = {aaa}
then the following are both clusters on the word a6:

a a a a a a

a a a a a a

but a a a a a a is not a cluster.
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We define the cluster generating function to be

C(t) =
∑

w∈A∗

w
∑

clusters c on w

t# marked words in c

The Goulden-Jackson Cluster Theorem.∑
w∈A∗

w t# forbidden words in w =

(
1−

∑
a∈A

a− C(t − 1)
)−1

.

Sketch of the proof. Replace t by t + 1. Then everything is
positive and easy to interpret.
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A simple example

Let A = {a,b, c} and let F = {abc,bcc}. Then there are only
three clusters:

a b c b c c a b c c

So∑
w∈A∗

w t# forbidden words in w

=

(
1−a−b− c−abc(t −1)−bcc(t −1)−abcc(t −1)2

)−1

.



If we want to avoid all forbidden words, we set t = 0 in the
Goulden-Jackson cluster theorem. With some work we obtain
the following analogue of the CSV theorem.

Theorem. The sum of all words in A∗ that avoid the words in F
may be written (∑

w∈A∗

µ(w)w
)−1

where for every word w , µ(w) is 0, 1, or −1.
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An example

Take A = {a} and take F = {aaaa}. Then

∞∑
n=0

µ(an)an = (1 + a + a2 + a3)−1

=

(
1− a4

1− a

)−1

=
1− a
1− a4 = 1− a + a4 − a5 + · · ·

so

µ(an) =


1 if n ≡ 0 (mod 4)
−1 if n ≡ 1 (mod 4)

0 otherwise



Why 0, 1, or −1?

We can get a recurrence for computing∑
clusters c on w

t# marked words in c .

We then set t = −1 and use the following lemma:

Let sn be a sequence of integers defined by s1 = 1 and for
n > 1,

sn = −(sn−1 + sn−2 + · · ·+ sn−β(n)),

for some β(n), where 1 ≤ β(n) < n. Then the nonzero entries
of s1, s2, s3, . . . are 1,−1,1,−1,1, . . . .

Example: Suppose s starts out: 1,0,−1,1,0. Then the next
entry must be 0 or −1.
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Note: This result is equivalent to a theorem of Curtis Greene:
the Möbius function of a lattice of unions of intervals, under
inclusion, is 0, 1, or −1. (C. Greene, A class of lattices with
Möbius function ±1,0, European J. Combin. 9 (1988),
225–240.)

Susan Parker’s and Brian Drake’s theses are not published, but
they can be found at
http://people.brandeis.edu/~gessel/homepage/
students/.
Further applications of the CSV theorem can be found in my
Ph.D. thesis:
http://people.brandeis.edu/~gessel/homepage/
papers/thesis.pdf

http://people.brandeis.edu/~gessel/homepage/students/
http://people.brandeis.edu/~gessel/homepage/students/
http://people.brandeis.edu/~gessel/homepage/papers/thesis.pdf
http://people.brandeis.edu/~gessel/homepage/papers/thesis.pdf

