Covariant bit threads, minimax surfaces, and entropy inequalities

Matthew Headrick (Brandeis)
"Extreme Universe from Qubits" conference, 16 Dec 2021
(based on work in progress w/ V. Hubeny, G. Giraldi)

Summary:
We will define several new formulas equivalent to the HRT formula. These involve both surfaces and bit threads of various kinds. Using one of them, we will explore entropy inequalities.

\[\text{QM := bulk, Fix boundary region } A \]
\[\text{\(\mathcal{M} = D(A) \cup D(A^c) \cup I^+ \cup I^- \)} \]

\[I^+ := J^+(\partial A) \cup \text{future lightcone} \]
\[I^- := J^-(\partial A) \cup \text{past lightcone} \]

\[\Sigma_A := \{ \text{hulk Cauchy slice } \sigma \mid \sigma \cap \mathcal{M} \supset \partial A \} \]
\[A_r := \sigma \cap D(A) \text{ is a Cauchy slice for } D(A) \]
\[\Gamma_r := \{ \text{surface } \gamma \in \sigma \mid \gamma \supset A_r \text{ relative to } \partial A \} \]

Maximizing: \(S_\gamma(A) := \sup_{\sigma \in \Sigma_A} \gamma \cap \sigma \) [Wall’92]
Can we put space and time on same footing?

A time-sheet \(\tau \) for \(A \) is an everywhere

\text{timelike or null hypersurface}

homologous to \(D(A) \) relative to \(I^+ \cap I^- \)

\[T_A := \{ \text{time-sheets for } A \} \]

Hence \(S_-(A) = \sup_{\sigma \in \Sigma_A} \inf_{\tau \in T_A} |\sigma \cdot \tau| \)

Can we switch order of sup and inf?

Minimax theory (invented by von Neumann for game theory)

For any function \(f : X \times Y \to \mathbb{R} \),

\[\inf_{x \in X} \sup_{y \in Y} f(x,y) \geq \sup_{y \in Y} \inf_{x \in X} f(x,y) \]

Equality is guaranteed if:

- \(\exists \) global saddle point \((x_0, y_0)\): \(\forall x \in X, \ f(x, y_0) \geq f(x_0, y_0) \)
 \(\forall y \in Y, \ f(x_0, y) \leq f(x_0, y) \)

or \(X, Y \) are convex sets, \(f(x,y) \) is convex in \(x \), concave in \(y \)

"mixed strategy games"

Define \(\underline{\text{minimax quantity}} \)

\[S_+(A) := \inf_{\sigma \in \Sigma_A} \sup_{\tau \in T_A} |\sigma \cdot \tau| \]

\[= \inf_{\sigma \in \Sigma_A} |\sigma| \]
where \(\Gamma_\tau = \{ \text{achronal surfaces in } \tau \} \)

\[\forall \varepsilon \text{ know } \mathcal{S}_+ (A) > \mathcal{S}_- (A) \]

Equal? Not necessarily:

For any \(\varepsilon \), if \(\inf \{ Y \} = \alpha_\varepsilon \)
\(\mathcal{D}(A^c) \)
\[\Rightarrow \mathcal{S}_-(A) = \alpha_\varepsilon \]

For any \(\tau \), sup \{ \mathcal{Y} \} = \alpha_+ \)
\(\mathcal{Y} \in \Gamma_\tau \)
\[\Rightarrow \mathcal{S}_+(A) = \alpha_+ \]

\[\Rightarrow \mathcal{Y}_{\text{HRT}} \text{ is a global saddle } \Rightarrow \mathcal{S}_+(A) = \mathcal{S}_-(A) = |\mathcal{Y}_{\text{HRT}}| \]

Proof of SSA using minimax:
\[s(AB) + s(BC) \geq s(\beta) + s(ABC) \]

Given boundary regions \(A, B, C \),

five-sheets \(\tau_1(AB), \tau_2(BC) \) cut each other into partial five-sheets
\[\tau_1(AB), \tau_2(AB), \tau_1(BC), \tau_2(BC) \]

Note that \(\tau_1(AB) \cup \tau_1(BC) \sim \mathcal{D}(A) \)

\[\begin{array}{c}
\tau_1(AB) \\
\tau_2(BC)
\end{array} \]

\[\tau \]

\[\mathcal{D}(A) \]

However, if QM obeys NEC, AdS boundary conditions then:

- \(\mathcal{Y}_{\text{HRT}} \text{ is maximal on maximal slice} \)
- \(\mathcal{Y}_{\text{HRT}} \text{ is maximal on entanglement horizon, which is a fine-sheet for } A \)

\[\Rightarrow \mathcal{Y}_{\text{HRT}} \text{ is a global saddle } \Rightarrow \mathcal{S}_+(A) = \mathcal{S}_-(A) = |\mathcal{Y}_{\text{HRT}}| \]
Lemma: \exists \text{ time-sheets } \tau(AB), \tau(BC) \\
containing the HRT surfaces \(\gamma(AB), \gamma(BC) \) \\
such that \(\gamma_1(AB) \) is maximal on \(\tau_1(AB) \), etc.

Define \(\tilde{\gamma}(B) \) as maximal surface on \(\tau_1(AB) \cup \tau_1(BC) \) \\
\(\tilde{\gamma}(ABC) \) as maximal surface on \(\tau_1(AB) \cup \tau_1(BC) \)

In general, \(\tilde{\gamma}(B) \neq \gamma_1(AB) \cup \gamma_1(BC) \), \(\tilde{\gamma}(ABC) \neq \gamma_2(AB) \cup \gamma_2(BC) \)

\[\text{do not connect to form a spacelike surface} \]

But \(|\tilde{\gamma}(B)| < |\gamma_1(AB) \cup \gamma_1(BC)| \), \(|\tilde{\gamma}(ABC)| < |\gamma_2(AB) \cup \gamma_2(BC)| \)

maximized under a weaker constraint

Hence

\[S(B) < |\tilde{\gamma}(B)| < |\gamma_1(AB)| + |\gamma_1(BC)| \]

\[S(ABC) < |\tilde{\gamma}(ABC)| < |\gamma_1(AB)| + |\gamma_1(BC)| + |\gamma_2(BC)| \]

\[\Rightarrow S(B) + S(ABC) < |\gamma_1(AB)| + |\gamma_2(AB)| + |\gamma_1(BC)| + |\gamma_2(BC)| \]

\[= |\gamma(AB)| + |\gamma(BC)| \]

\[= S(AB) + S(BC) \]
Proof generalizes to higher entropy inequalities [Boo et al] (proven for $d=2+1$ by Czech-Dong)

<table>
<thead>
<tr>
<th>RT entropy cone</th>
<th>RT entropy cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\geq S(AB) + S(BC) + S(AD) + \cdots$</td>
<td></td>
</tr>
<tr>
<td>$S(AD) + S(BC) + S(AC) \geq S(A) + S(B) + S(C) + S(ABC)$</td>
<td></td>
</tr>
</tbody>
</table>

Bit threads from convex relaxation + duality:

We can get even more interesting formulas by convex-relaxing the space of slices + fine-sheets

Smeared slice: function $\varphi : M \to [-\frac{1}{2}, \frac{1}{2}]$ s.t.

- φ is future-directed causal
- $\varphi_i |_{(q_{\text{fin}})_v} = \pm \frac{1}{2}$

\Rightarrow every level set of φ is a Cauchy slice $\in \Sigma_A$

This function set is convex

Smeared fine-sheet: function $\Psi : M \to [-\frac{1}{2}, \frac{1}{2}]$ s.t.

- Ψ_{fin} is spacelike or O
- $\Psi_i |_{(q_{\text{fin}})_v} = \pm \frac{1}{2}$

\Rightarrow every level set of Ψ is a fine-sheet $\in \Sigma_A$

This function set is not convex!
double coarea formula
\[f(\varphi, \psi) := \text{average over level sets of } |\varphi - \psi| = \int_G |d\varphi \land d\psi| \]

Drop condition on \(\partial \psi \) to make \(\varphi \) convex;
extend \(f \) to convex-concave function:
\[|\mathbf{u} \land \mathbf{v}| := \max \left(|\mathbf{u} \land \mathbf{v}|, |\mathbf{u} \cdot \mathbf{v}| \right) \quad f(\varphi, \psi) := \int_G |d\varphi \land d\psi| \]

(\text{convex envelope function of } |\mathbf{u} \land \mathbf{v}| \text{ with respect to } \psi)

\[S_c(A) := \sup_{\varphi} \inf_\psi f(\varphi, \psi) = \inf_\psi \sup_{\varphi} f(\varphi, \psi) \]

\text{minmax theorem}

Now we can dualize on \(\varphi \) or on \(\psi \)
\[S_c(A) = \sup_V \int_V \mathbf{u} \cdot \mathbf{v} = \inf_u \int_u \mathbf{v} \]

\text{\textquotedblleft} \text{V-flow} \text{\textquotedblright:} 1-form \(\mathbf{v} \) s.t.
\begin{itemize}
 \item \(d^* \mathbf{v} = 0 \) (divergenceless)
 \item \(\varphi |_{\mathbb{T}_G} = 0 \) \quad (\text{no flux})
 \item \(\exists \varphi \text{ s.t. } \varphi |_{\mathbb{T}_G} = \pm \frac{1}{2}, \ d\varphi \pm \mathbf{v} \text{ future-directed causal} \)
\end{itemize}
\(\text{V} \text{ timelike curve } \gamma, \int_0^1 \gamma' \leq 1 \quad \text{orthogonal projection} \)

\text{\textquotedblleft} \text{U-flow} \text{\textquotedblright:} 1-form \(\mathbf{u} \) s.t.
\begin{itemize}
 \item \(d^* \mathbf{u} = 0 \) \quad (\text{divergenceless})
 \item \(\mathbf{u} |_{\mathbb{T}_G} = 0 \) \quad (\text{no flux})
\end{itemize}

\text{\textit{(norm bound)}}
\[\exists \Psi \text{ s.t. } \Psi|_{D(A)} = -\frac{1}{2}, \quad \Psi|_{D(A^c)} = \frac{1}{2}, \quad U = \text{future-directed causal} \]

\[\forall \text{ spacelike curve } p \text{ from } D(A) \text{ to } D(A^c), \quad \int ds |U| \geq 1 \]

In general, \(S_- (A) \leq S_c (A) \leq S_+ (A) \)

\[\text{If } S_- (A) = S_+ (A) \text{ then } S_c (A) = S_c (A) \]

Optimal U-flow, V-flow find HRT surface + entanglement wedges
\[I^+ \]

\[I^- \]

\[D(A) \]

\[D(A^c) \]

\[H(A) \]

\[H(A^c) \]

\[\gamma(A) \]

\[H(A) \]

\[H(A^c) \]

\[H(A^c) \]

\[D(A) \]

\[D(A^c) \]

\[I^+ \]

\[I^- \]

\[D(A) \]

\[D(A^c) \]

\[H(A) \]

\[H(A^c) \]

\[\gamma(A) \]