Dynamics on homogeneous spaces
and new applications to number theory

Dmitry Kleinbock

Brandeis University

Nachdiplom Lectures, ETH, Zürich

Spring 2022
Sasha Anisimova, Stolen Lives, Kharkiv
Recall: **Proposition 4.6.**
Let $\Gamma \subset G$ be a discrete subgroup. Then the following are equivalent:

(a) on $X = \Gamma \backslash G$ there exists a G-invariant probability measure m_X which satisfies $m_X(g \cdot B) = m_X(B)$ $\forall B \subset X$ and $g \in G$ (Γ is a lattice in G)

(b) there is a fundamental domain F for Γ in G with $m_G(F) < \infty$

(c) there is a fundamental domain $F \subset G$ such that $m_G^{(r)}(F) < \infty$, and $m_G^{(r)}$ is left Γ-invariant

If any (and hence all) of these conditions hold, then G is **unimodular**. That is, $m_G = m_G^{(r)}$.
Also: using our previous work on injectivity radii we can get a general "compactness criterion" describing sequence \((x_n) \subset \Gamma \backslash G\) that go to infinity:

Proposition 5.1. Let \(\Gamma \subset G\) be a lattice. Then \(x_n \to \infty\) as \(n \to \infty\), meaning that for any compact \(K \subset X\) \(\exists N = N(K)\) such that \(x_n \notin K\) for \(n > N\).

\[\uparrow\]

the maximal injectivity radius \(r(x_n)\) of \(x_n\) goes to zero as \(n \to \infty\).

Proof. \(\uparrow\) by Lemma 4.2; \(\downarrow\) by

\[\Rightarrow m_{x_n}(X) = \infty\]

(\(\downarrow\) is not true without the finite volume assumption)
Here is an important special case:

Definition. A discrete subgroup Γ of G is called **co-compact** or **uniform** if the quotient space $X = \Gamma \backslash G$ is compact.

Notice that Lemma 4.2 implies that in this case $X = \pi(K)$ for some compact subset K of G.

Hence X must be of finite volume, that is, Γ has to be a lattice.

Example. $\mathbb{Z}^d \subset \mathbb{R}^d$, or any lattice in an abelian (also nilpotent) group.
Conclusion: in order to construct non-compact homogeneous spaces we need to start with as non-commutative G as possible. So let us come back to the beginning of the course, when we discussed $G = \text{PSL}_2(\mathbb{R})$. Recall:

- G acts transitively on the upper-half plane \mathbb{H} via

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d}$

 and simply transitively on the unit tangent bundle $T^1\mathbb{H}$; thus can be identified with $T^1\mathbb{H}$ as a left G-space;

- the hyperbolic metric

 $$\langle \xi, \eta \rangle_z = \frac{\xi \cdot \eta}{(\text{Im } z)^2} \iff \|\xi\|_z = \frac{|\xi|}{\text{Im } z},$$

 is invariant by this action \Rightarrow corresponds to invariant Riemannian metric on G.

Classically, discrete subgroups of $G = \text{PSL}_2(\mathbb{R})$ are called **Fuchsian** groups. Here is a classical characterization in terms of their action on the hyperbolic plane.

Definition: Let X be a locally compact metric space whith an action of a countable group Γ by homeomorphisms. The action is said to be **properly discontinuous (PD)** if for any compact set $K \subset X$ the set

$$\{ \gamma \in \Gamma : \gamma K \cap K \neq \emptyset \}$$

is finite.

Lemma 5.2. An infinite subgroup $\Gamma \subset \text{PSL}_2(\mathbb{R})$ is a Fuchsian group \iff its action on \mathbb{H} is PD.

Proof. \iff is clear.
Conversely, assume that Γ is discrete, take $K = \{ w : |w| \leq R, \ \text{Im}(w) \geq \varepsilon \}$ and define

$$B := \{ g \in G : gK \cap K \neq \emptyset \}.$$

Need to show that B is bounded in $G = \text{PSL}_2(\mathbb{R})$.

Well, if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in B$, then for some $z \in K$

$$\frac{|az + b|}{|cz + d|} \leq R \quad \text{and} \quad \text{Im}(g \cdot z) = \frac{\text{Im} z}{|cz + d|^2} > \varepsilon.$$

Thus

$$|cz + d|^2 \leq \frac{\text{Im} z}{\varepsilon} \leq \frac{R}{\varepsilon} \quad \left\{ \text{(Exercise)} \right\}$$

and

$$|az + b|^2 \leq R^2 |cz + d|^2 \leq \frac{R^3}{\varepsilon}$$

\implies the coefficients of all matrices in B are uniformly bounded. \square
Recall: the Uniformization Theorem implies that every Riemann surface M is conformally equivalent to a quotient $\Gamma \backslash \tilde{M}$, where \tilde{M} is the universal cover of M, and Γ is a discrete subgroup of $\text{Isom}^+(\tilde{M})$ (the group of orientation-preserving isometries). When the genus of M is at least 2, $\tilde{M} = \mathbb{H}$ and $\text{Isom}^+(\tilde{M}) = \text{PSL}_2(\mathbb{R})$.

Thus (compact and non-compact) Riemann surfaces of higher genus and finite area

\[\downarrow \]

(uniform and non-uniform) lattices in $\text{PSL}_2(\mathbb{R})$.

\[\mathbb{H}^2 \]

\[\mathbb{H} \]
In other words, if we start with a Riemann surface M, we are getting an example of a discrete subgroup $\Gamma = \pi_1(M)$ together with a way to construct a fundamental domain (by cutting along some closed loops and straightening out the surface).

But what if we are given $\Gamma \subset \text{PSL}_2(\mathbb{R})$? how to construct/visualize a fundamental domain for Γ?
Recall: a fundamental domain $F \subset G$ for Γ is defined by the condition

$$G = \bigcup_{\gamma \in \Gamma} \gamma F \quad \text{(disjoint union)}.$$

which sometimes is not convenient.

Let us replace it with the following

Definition. A fundamental region D for Γ is an open subset of G such that

- $D \cap \gamma D = \emptyset$ for all $\gamma \notin e$;
- $G = \bigcup_{\gamma \in \Gamma} \gamma \overline{D}$.
Definition. Let Γ be an infinite Fuchsian group, and let $p \in \mathbb{H}$ be a point not fixed by any element of Γ other than the identity. The set

$$D = D_p := \{ z \in \mathbb{H} : d(z, p) < d(z, \gamma p) \text{ for all } \gamma \in \Gamma \setminus \{e\} \}$$

(the intersection of hyperbolic half-planes

$$H_\gamma := \{ z \in \mathbb{H} : d(z, p) < d(z, \gamma p) \}$$

over all $\gamma \in \Gamma \setminus \{e\}$) is called a **Dirichlet region** for Γ.

[Diagram of hyperbolic half-planes and Dirichlet region with points $\gamma_1 p$, $\gamma_2 p$, and $\gamma_3 p$]
Lemma 5.3. Any Dirichlet region D for an infinite Fuchsian Γ is a fundamental region for the action of Γ on \mathbb{H}.

The boundary of D is made up of geodesic segments contained in geodesics defined by

$$L_\gamma := \{z \in \mathbb{H} : d(z, p) = d(z, \gamma p)\}$$

for $\gamma \in \Gamma \setminus \{e\}$.
Proof. Let $D = D_p$ be a Dirichlet region.

Note: D is open because the action of Γ is PD.

Fix $z \in \mathbb{H}$. Since the Γ-orbit of z is discrete, there exists $w \in \Gamma z$ such that

$$d(w, p) \leq d(\gamma w, p) = d(w, \gamma^{-1} p)$$

for all $\gamma \in \Gamma$.

If all \leq are $<$ then $w \in D$.

If some are $=$:

Take $w' \in [p, w]$; then

$$d(w', p) < d(w, p) = d(w, \gamma p) < d(w', \gamma p)$$

Then the geodesic segment $[p, w]$ is contained in D, since $p \in D$ and $d(w, p) \leq d(w, \gamma p)$ for all $\gamma \in \Gamma$.

Hence the closure of D meets every Γ-orbit.
Now let us see why translates of D by $\gamma \in \Gamma$ do not intersect. Let $w' = \gamma w$ for some $\gamma \in \Gamma \setminus \{e\}$. Assume that both w and w' lie in D. Then

\[
d(w, p) < d(w, \gamma^{-1} p) = d(w', p),
\]

and, similarly,

\[
d(w', p) < d(w', \gamma p) = d(w, p).
\]

This is a contradiction.
Let us test it on a specific example, taking $\Gamma = \text{PSL}_2(\mathbb{Z})$, the so-called modular group.

Clearly it is discrete, i.e. Fuchsian.

Easy to check:

- Let $p = yi$ where $y > 1$.
 Then $\gamma \cdot p \neq p$ for any $\gamma \in \Gamma \setminus \{e\}$.
 (thus one can use $p = yi$ to construct a Dirichlet region)

- The set
 $$D = \{ z \in \mathbb{H} : |z| > 1, \ |\text{Re}(z)| < 1/2 \}$$

 is a Dirichlet region for Γ corresponding to $p = yi$.

Conclusion: it is a fundamental region for the Γ-action on \mathbb{H}.
Another conclusion: $\operatorname{PSL}_2(\mathbb{Z}) \backslash \operatorname{PSL}_2(\mathbb{R})$ is not compact.

Actually, why?

We have constructed a noncompact fundamental region, but does it imply that the space itself is not compact?

Example. Look at $\mathbb{Z}^2 \subset \mathbb{R}^2$.

So why doesn’t such a phenomenon happen for D?

- Let $\Gamma = \operatorname{PSL}_2(\mathbb{Z})$, take $p \in \mathbb{H}$, and suppose $(g_n) \subset G$ is a sequence such that $\operatorname{Im}(g_n \cdot p) \to \infty$.
 Then $\Gamma g_n \to \infty$ in $\Gamma \backslash G$

(Explanation: $r(\Gamma g_n) \to 0$.)

(Proposition 5.1)
Fact: The hyperbolic area form

\[dA = \frac{1}{y^2} \, dx \, dy \text{ on } \mathbb{H} \]

and the hyperbolic volume form

\[dm = \frac{1}{y^2} \, dx \, dy \, d\theta \text{ on } T^1\mathbb{H}, \]

where \(\theta \) gives the angle of the unit tangent vector at \(z = x + iy \), are both invariant under the respective actions of \(\text{PSL}_2(\mathbb{R}) \).

Consequently, \(\Gamma = \text{PSL}_2(\mathbb{Z}) \) is a lattice in \(G = \text{PSL}_2(\mathbb{R}) \).

(Explanation:

\[\text{Area}(D) < \int_{\sqrt{3}/2}^{\infty} \int_{-1/2}^{1/2} \frac{dx \, dy}{y^2} = \int_{\sqrt{3}/2}^{\infty} \frac{dy}{y^2} = \frac{2}{\sqrt{3}} < \infty. \]
Here is another way the space

\[\text{PSL}_2(\mathbb{Z}) \backslash \text{PSL}_2(\mathbb{R}) \cong \text{SL}_2(\mathbb{Z}) \backslash \text{SL}_2(\mathbb{R}) \]

shows up. Given

\[g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G = \text{SL}_2(\mathbb{R}), \]

consider the integer span of its row vectors:

\[\Lambda = \{ k \begin{pmatrix} a \\ c \end{pmatrix} + \ell \begin{pmatrix} b \\ d \end{pmatrix} : k, \ell \in \mathbb{Z} \}. \]

It is a lattice in \(\mathbb{R}^2 \), and the covolume of this lattice (the area of the parallelogram spanned by \(v := (a \ b) \) and \(w := (c \ d) \) is equal to 1.
Say that two elements \(g, g' \in \text{SL}_2(\mathbb{R}) \) are equivalent, \(g \sim g' \), if their row vectors span the same lattice \(\Lambda \).

Questions:

- How to decide if \(g, g' \) are equivalent?
- How to describe equivalence classes?
Answer: \(g = \begin{pmatrix} v \\ w \end{pmatrix} \sim g' = \begin{pmatrix} v' \\ w' \end{pmatrix} \)

\[\iff \quad g' = \gamma g \]

\[v' = kv + \ell w \quad \text{and} \quad w' = mv + nw, \]

where \(k, \ell, m, n \in \mathbb{Z} \) and \(\gamma = \begin{pmatrix} k & \ell \\ m & n \end{pmatrix} \) has determinant 1.

That is, \(\gamma \in \text{SL}_2(\mathbb{Z}) \), and equivalence classes (unimodular lattices in \(\mathbb{R}^2 \)) are in one-to-one correspondence with cosets \(\Gamma g \).

In other words, \(\Gamma \backslash G \) is the space of unimodular lattices in \(\mathbb{R}^2 \), which is a \(G \)-space under the action of \(G \),

\[g \cdot \Lambda = \Lambda g^{-1} = \{ vg^{-1} : v \in \Lambda \}. \]
Good news: the same approach works in a more general set-up:

- Any lattice in \mathbb{R}^d has the form $\Lambda = \mathbb{Z}^d g$ for some $g \in \text{GL}_d(\mathbb{R})$.
- A fundamental domain for Λ is given by the parallelepiped $[0,1)^d g$ which is spanned by the row vectors of g and has Lebesgue measure $|\det g|$. This measure is also called the covolume $\text{cov}(\Lambda)$ of Λ.

- A lattice $\Lambda \subset \mathbb{R}^d$ is called **unimodular** if the covolume is 1. The space of all unimodular lattices in \mathbb{R}^d is therefore

$$X_d := \{ \mathbb{Z}^d g : g \in G = \text{SL}_d(\mathbb{R}) \},$$

which is the orbit of \mathbb{Z}^d under the right action of G on the subsets of \mathbb{R}^d: for $B \subset \mathbb{R}^d$ and $g \in G$ this right action sends (g, B) to $B g = \{ v g : v \in B \}$.

- Notice that

$$\text{Stab}_G(\mathbb{Z}^d) = \Gamma = \text{SL}_d(\mathbb{Z}),$$

so that $X_d = \Gamma \backslash G$, where Γg corresponds to the lattice $\mathbb{Z}^d g$.

HomDyn
D.K.

1. Intro
2. HSs, MPTs
3. ETs, ED, M
4. DSbgps
5. Lattices
Remark. Notice that we have several ways to build topology (metric, manifold structure) on X_d:

- the quotient topology, pushed by the projection $G \hookrightarrow \Gamma \backslash G$ ($\Lambda_n \to \Lambda$ if $\Lambda_n = \mathbb{Z}^d g_n$, $\Lambda = \mathbb{Z}^d g$, and $\Gamma g_n \to \Gamma g$);
- the topology coming from bases of lattices: $\Lambda_n \to \Lambda$ if we can choose a basis $v_1^{(n)}, \ldots, v_d^{(n)}$ of Λ_n such that $v_i^{(n)} \to v_i$ for all i, and (v_1, \ldots, v_d) is a basis of Λ;
- the topology of uniform convergence on compacta: $\Lambda_n \to \Lambda$ if for any $R > 0$ each element of $\Lambda_n \cap B(0, R)$ converges to some element of $\Lambda \cap B(0, R)$.

Claim. These topologies are the same!
To understand the space X_d better, and also to see how it is relevant to number theory, we need to develop a better understanding of lattices in \mathbb{R}^d.

Lemma 5.4 (Minkowski’s Convex Body Lemma). Let $\Lambda \subset \mathbb{R}^d$ be a lattice of covolume V, and let D be a convex centrally symmetric subset of \mathbb{R}^d with $\text{vol}(D) > 2^d V$. Then $D \cap \Lambda \neq \{0\}$.

The same conclusion holds when $\text{vol}(D) = 2^d V$ and D is compact.
Proof. Since D is convex and centrally symmetric, it coincides with the set

$$\frac{1}{2}D - \frac{1}{2}D = \{x - y : x, y \in \frac{1}{2}D\}.$$

Suppose that $D \cap \Lambda = \{0\}$. Then it is not possible to find $x, y \in \frac{1}{2}D$ with $x - y \in \Lambda \setminus \{0\}$.

This amounts to saying that the natural projection π from \mathbb{R}^d onto \mathbb{R}^d/Λ is injective when restricted to $\frac{1}{2}D$. Hence

$$\frac{1}{2^d} \text{vol}(D) = \text{vol}\left(\frac{1}{2}D\right) \leq \text{vol}\left(\pi\left(\frac{1}{2}D\right)\right) \leq \text{vol}(\mathbb{R}^d/\Lambda) = \text{cov}(\Lambda),$$

a contradiction.

The last claim follows from a compactness argument. □
Corollary 5.5 (Minkowski’s 1st theorem).
Fix any norm $\| \cdot \|$ on \mathbb{R}^d.
If $\Lambda \subset \mathbb{R}^d$ is a lattice of covolume V, then there exists a non-zero vector
in Λ of length $\leq 2 \left(\frac{V}{c_d} \right)^{1/d}$, where c_d is the volume of the unit ball
with respect to $\| \cdot \|$.

Proof. With $D = B(0, r)$,

$$\text{vol}(D) = c_d r^d = 2^d V \iff r = 2 \left(\frac{V}{c_d} \right)^{1/d}. \quad \square$$

Note that in general the inequality in Corollary 5.5 is not sharp, but it is sharp if $\| \cdot \|$ is the supremum norm ($c_d = 2^d$).
Now let us use the existence of short vectors in a lattice to define an important family of subsets of X_d: for any $r > 0$ let

$$Q_r := \{ \Lambda \in X_d : \Lambda \cap B(0, r) = \{0\} \}.$$

Clearly it depends on the choice of the norm on \mathbb{R}^d (but not significantly). Corollary 5.5 implies that $Q_r = \emptyset$ if $r > 2 (\frac{1}{d}/c_d)^{1/d}$.

When $\| \cdot \|$ is the supremum norm, we have

- $Q_r = \emptyset$ if $r > 1$;
- $Q_1 \neq \emptyset$;
- Q_r has non-empty interior if $r < 1$.

(actually $V = 1$)
Example. Let $d = 2$. What is Q_1? what is Q_r when r is small?

(Nothing else)
It turns out that the picture we saw in the case $d = 2$ is valid for $d > 2$ as well. Namely, we have

Theorem 5.6 (Mahler’s Compactness Criterion).

$Q \subset X_d$ is relatively compact $\iff Q \subset Q_\varepsilon$ for some $\varepsilon > 0$.

The direction “\implies” is clear: Λ has a very small vector

$$\downarrow$$

its injectivity radius must be very small \implies it is far away.

Equivalently, if there exist $v_n \in \Lambda_n$ with $\|v_n\| \to 0$, then (Λ_n) cannot have a convergent subsequence. In particular, X_d is not compact.

So it remains to prove that Q_ε is itself compact.
To prove it, we need to upgrade a proof for the case $d = 2$ to an inductive construction.

Definition. Let Λ be a lattice in \mathbb{R}^d. We define the kth *successive minimum* of Λ by

$$
\lambda_k(\Lambda) := \min \left\{ r \left| \begin{aligned}
\Lambda & \text{ contains } k \text{ linearly independent } \\
& \text{ vectors of norm } \leq r
\end{aligned} \right. \right\}.
$$

Clearly $\lambda_1(\Lambda) \geq r \iff \Lambda \in Q_r$.
Theorem 5.7 (Minkowski’s 2nd Theorem + Reduction).

Let \(\Lambda \) be a lattice in \(\mathbb{R}^d \). Then

(i) \(\lambda_1(\Lambda) \cdots \lambda_d(\Lambda) \asymp \text{cov}(\Lambda) \);

(ii) there is a \(\mathbb{Z} \)-basis \(\{v_1, \ldots, v_d\} \subset \Lambda \) of \(\Lambda \) such that

\[
\|v_1\| = \lambda_1(\Lambda), \ldots, \|v_d\| = \lambda_d(\Lambda).
\]

This basis is "almost orthogonal".

Here \(\asymp \) (and later \(\gg \)) means that the ratio is bounded from both sides (or from one side) by a constant dependent only on \(d \).

Remark. An informal meaning of this theorem is that \(\Lambda \) possesses a nice (reduced = almost orthogonal) basis, and the technique to get such a basis from an arbitrary one is referred to as reduction theory.
Proof. By induction on d:

\[\lambda_1 \]

\[(d = 1) \]

\[V_{\mathbf{x} + \mathbf{\lambda}} \]

\[\mathbb{R}^k \]
Proof of Theorem 5.6.

Let \(\{\Lambda_n\} \subset Q_\varepsilon \) be any sequence. Then, by Theorem 5.7, \(\Lambda_n \) has a basis \(v_1^{(n)}, \ldots, v_d^{(n)} \) with

\[
\varepsilon \leq \lambda_1(\Lambda) = \|v_1^{(n)}\| \ll \cdots \ll \|v_d^{(n)}\|
\]

and

\[
\|v_1^{(n)}\| \cdots \|v_d^{(n)}\| \asymp 1,
\]

which implies that

\[
\varepsilon \leq \|v_i^{(n)}\| \leq \varepsilon^{-(d-1)} \quad \text{for } i = 1, \ldots, d
\]

\(\implies \) can choose a convergent subsequence.
Another use of reduction theory is to prove

Theorem 5.8. $SL_d(\mathbb{Z})$ is a lattice in $SL_d(\mathbb{R})$.

For this we need to understand something about the structure of $G = SL_d(\mathbb{R})$ and the way the Haar measure on G is built.

Theorem 5.9 (Iwasawa Decomposition).

$U \times A \times K \rightarrow G = UAK$ is a 1-1 correspondence, where

- $U = \{\text{lower-triangular unipotent matrices}\}$;
- $A = \{\text{diagonal matrices with positive entries}\}$;
- $K = SO(d)$.

Proof: Gram-Schmidt orthogonalization.
How does it affect the measure?
Here is a general principle for building measures on products of groups.

Lemma 5.10. Let G be a σ-compact unimodular group, and let $V, W \subset G$ be closed subgroups such that

- $V \cap W = \{e\}$;
- the product set VW contains a neighborhood of $e \in G$.

Let $\phi : V \times W \to G$ be the product map

$$\phi(g, h) = gh \in VW \subset G.$$

Then the Haar measure m_G restricted to VW is proportional to the pushforward $\phi_* \left(m_V \times m_W^{(r)} \right)$, where m_V is a left Haar measure on V and $m_W^{(r)}$ is a right Haar measure on W.
Proof. We will actually use $\Phi : V \times W \rightarrow G$ defined by

$$\Phi(g, h) = \phi(g, h^{-1}) = gh^{-1}.$$

Note that for any $g, g_0 \in V$ and $h, h_0 \in W$ we can write

$$\Phi((g, h)(g_0, h_0)) = \Phi(gg_0, hh_0) = gg_0(hh_0)^{-1}$$
$$= gg_0 h_0^{-1} h^{-1} = g \Phi(g_0, h_0) h^{-1}.$$

Let $\nu := (\Phi^{-1})_* m_G$. Then, for $B \subset V \times W$ and $(g, h) \in V \times W$ we have

$$\nu((g, h)B) = m_G(\Phi((g, h)B)) = m_G(g \Phi(B) h^{-1})$$
$$= m_G(\Phi(B)) = \nu(B).$$

It follows that ν is a left Haar measure on $V \times W$, and so must be proportional to $m_V \times m_W$.

But ϕ and Φ differ only by the inverse in the second component, and the inverse map sends m_W to a measure proportional to $m_W^{(r)}$, so the lemma follows. \qed
Definition. A set of the form $\Sigma_{s,t} = U_s A_t K$ where $s, t > 0,$

$$U_s = \left\{ \begin{pmatrix} 1 \\ * & \ddots \\ * & & 1 \end{pmatrix} : |*| \leq s \right\}$$

and

$$A_t = \left\{ \text{diag}(a_1, \ldots, a_d) : \left| \frac{a_{i+1}}{a_i} \right| \geq t \text{ for } i = 1, \ldots, d - 1 \right\}$$

is called a Siegel domain.

Proposition 5.11. For any $t \leq \sqrt{3}/2$ and $s \geq 1/2$ the Siegel domain $\Sigma_{s,t}$ is surjective (that is, $\pi(\Sigma_{s,t}) = X_d$).

Proof: Apply the Gram-Schmidt orthogonalization to the reduced basis constructed in Theorem 5.7.
To complete the proof of Theorem 5.9, it remains to show the following

Lemma 5.12. For any $s, t > 0$, we have $m_G(\Sigma_{s,t}) < \infty$.

Proof. This is just a higher-dimensional analog of our computation for $d = 2$ (finiteness of hyperbolic area of the fundamental region for $\text{SL}_2(\mathbb{Z}) \backslash \text{SL}_2(\mathbb{R})$). The steps are:

1. show that G is simple (the commutator $[G, G]$ contains all the elementary unipotent subgroups), hence unimodular;

2. using Thereom 5.9 (Iwasawa Decomposition) and Lemma 5.10, write m_G as a product of a left Haar measure on UA and a (right = left) Haar measure on K (the latter can be ignored for our computation);

3. a left Haar measure on the group UA of lower-triangular matrices is given by $\left(\prod_{i<j} \frac{a_i}{a_j}\right) (d*) da_1 \cdots da_d$

4. the integral over the Siegel set converges \implies the measure is finite. \qed
An explanation for (3): (taking \(d = 2 \) for simplicity)

Claim. With the notation \(v_{a,b} := \begin{pmatrix} a^{-1} & 0 \\ b & a \end{pmatrix} \),
a left Haar measure on \(V = \{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \} \) is given by \(\frac{dadb}{a^2} \).

Proof. Indeed,

\[
v_{\alpha,\beta} v_{a,b} = v_{a',b'}, \quad \text{where} \quad a' := \alpha a \quad \text{and} \quad b' := \beta a^{-1} + \alpha a,
\]

\[
\begin{pmatrix} \alpha^{-1} & 0 \\ \beta & \alpha \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ b & a \end{pmatrix} = \begin{pmatrix} (\alpha a)^{-1} & 0 \\ \beta a^{-1} + \alpha b & \alpha a \end{pmatrix}
\]

so for a function \(f \) on \(V \) we can write

\[
\int_V f(v_{\alpha,\beta} v_{a,b}) \frac{dadb}{a^2} = \int_V f(v_{a',b'}) \frac{da'db'}{(a')^2}.
\]
Summary: looking from far away, the space X_2 is just a ray $\{a_t i : t \geq 0\}$.

Similarly, if we ignore compact parts, the space X_d can be thought of as the cone $A^{\sqrt{3}/2}$, with the measure exponentially thinning at infinity.