Dynamics on homogeneous spaces
and new applications to number theory

Dmitry Kleinbock

Brandeis University

Nachdiplom Lectures, ETH, Zürich

Spring 2022
Bucha. Anton Logov, Kyiv
Lecture 6, 6/4/22. Ergodicity and mixing on $\Gamma \backslash G$

Recall: at the end of the last lecture we were talking about

$$X_d := \Gamma \backslash G \text{ where } G = \text{SL}_d(\mathbb{R}) \text{ and } \Gamma = \text{SL}_d(\mathbb{Z}),$$

the groups of real (resp. integer) $d \times d$ unimodular matrices. In particular we showed that Γ is a non-uniform lattice in G, that is, X_d is not compact and carries a finite G-invariant measure.

The plan now is to look at dynamics on $\Gamma \backslash G$, with X_d being the main example. The reasons are:

- modulo technical difficulties it is quite similar to the general case;
- the space can be visualized nicely;
- there are plenty of applications to number theory.
Our first goal is to prove

Theorem 6.1 (Moore’s Ergodicity Theorem).
Let $\Gamma \subset G = \text{SL}_d(\mathbb{R})$ be a lattice, $X = \Gamma \backslash G$ and $\mu = m_X$.
Let $g \in G$ be such that the group generated by g is unbounded in G.
Then $R_g : x \mapsto xg^{-1}$ acts ergodically on (X, μ).

Here I will follow the representation-theoretic, or spectral, approach going back to Gelfand–Fomin and Mautner (1950s).

Recall that ergodicity of $T : X \to X$ is equivalent to
the absence of non-constant U_T-invariant functions in $L^2(X)$.

However we will need to consider the action of several elements of G simultaneously. This defines a unitary representation ρ of G
on $\mathcal{H} = L^2(X)$: $\rho(g) = U_{R_{g^{-1}}}$, that is, for $f \in L^2(X)$ we have

$$(\rho(g)f)(x) = f(g^{-1} \cdot x) = f(xg).$$

And the ergodicity result will in fact follow from a result about unitary representations.
Theorem 6.1. Let \mathcal{H} be a Hilbert space, and let ρ be a unitary representation of $G = \text{SL}_d(\mathbb{R})$ on \mathcal{H}. Suppose that $g \in G$ generates an unbounded subgroup. Then any vector $v_0 \in \mathcal{H}$ that is fixed by $\rho(g)$ is fixed by all of $\rho(G)$.

Because G acts transitively on X, the only $\rho(G)$-invariant functions are constant; hence Theorem 6.1 follows from Theorem $6.\overline{1}$.

More generally, we have

Corollary 6.2. Let X be a locally compact metric space with a Borel probability measure μ, and suppose that μ is ergodic for a measure-preserving action of $G = \text{SL}_d(\mathbb{R})$. Then any $g \in G$ generating an unbounded subgroup acts ergodically on X.

Examples:

- $\text{SL}_d(\mathbb{R}) = G \subset L$, a bigger Lie group, and $X = \Gamma \backslash L$, where Γ is a lattice in L;

- $G = \text{SL}_2(\mathbb{R})$ acting on the moduli space of Riemann surfaces.
Now let us prove Theorem 6.1; the key argument, usually referred to as "Mautner Phenomenon" or "Mautner Lemma".

[Mautner 1957, Geodesic flows on symmetric Riemannian spaces]

Proposition 6.3. Let G be a locally compact metric group, and let ρ be a unitary representation of G on a Hilbert space \mathcal{H}. Suppose that $v \in \mathcal{H}$ is fixed by $\rho(F)$ for some subgroup $F \subset G$. Then v is also fixed by $\rho(h)$ for any $h \in G$ with the property that

$$hB_G(r) \cap FB_G(r)F \neq \emptyset \text{ for every } r > 0; \quad (*)$$

(equivalently, $h = \lim_{k \to \infty} g_k h g_k'$ for some $g_k, g'_k \in F$ and $h_k \to e$).

\[\text{Diagram with group elements and orbits}\]
How is it related to Theorem 6.1?

Let's see it in the case

$$G = \text{SL}_2(\mathbb{R}) \text{ and } g = a_t := \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}. $$

The crucial point is the relationship between a_t and two unipotent subgroups of G: $u_s := \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$ and $v_s := \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$, namely,

$$a_t u_s a_{-t} = \text{ and } a_t v_s a_{-t} = \text{.}$$
Let $F = g^\mathbb{Z} = \{g^n : n \in \mathbb{Z}\}$. Then

$$FB_G(r)F \supset \bigcup_{k \in \mathbb{N}} a_{kt}B_G(r)a_{-kt}$$

will contain every h of the form $u_s, s \in \mathbb{R}$, and likewise

$$FB_G(r)F \supset \bigcup_{k \in \mathbb{N}} a_{-kt}B_G(r)a_{kt} \supset \{v_s : s \in \mathbb{R}\}.$$

Hence any g-invariant vector will also be u_s- and v_s-invariant for any $s \in \mathbb{R}$, and $\{u_s : s \in \mathbb{R}\}$ and $\{v_s : s \in \mathbb{R}\}$ generate G

\implies Theorem 6.1 follows for this case.
Proof of Proposition 6.3.

Recall that we are given \(v \in \mathcal{H} \) fixed by \(\rho(F) \) for \(F \subset G \). Without loss of generality we may assume that \(\|v\| = 1 \).

Define the auxiliary function, so-called matrix coefficient

\[
\phi : G \rightarrow \mathbb{R}, \quad \phi(h) := \langle \rho(h)v, v \rangle.
\]

Notice that \(\phi \) is continuous by the continuity requirement in the definition of a unitary representation.

Also, for \(g_1, g_2 \in F \) and \(h \in G \) we have

\[
\phi(g_1 hg_2) = \langle \rho(g_1 hg_2)v, v \rangle = \langle \rho(h)\rho(g_2)v, \rho(g_1^{-1})v \rangle
\]

\[
= \langle \rho(h)v, v \rangle = \phi(h),
\]

that is, \(\phi \) is bi-\(\rho(F) \)-invariant.
Now let $h \in G$ be as in the statement of the proposition, and, using (\ast), choose sequences $h_k \to e$ and $g_k, g'_k \in F$ such that

$$g_k h_k g'_k \to h \text{ as } k \to \infty.$$

Then

$$\langle \rho(h)v, v \rangle = \phi(h) \leftarrow \phi(g_k h_k g'_k) = \phi(h_k) \to \phi(e) = \langle v, v \rangle = 1$$

as $k \to \infty$. Since $\|\rho(h)v\| = \|v\| = 1$, this (and the equality case in the Cauchy-Schwartz inequality) implies that $\rho(h)v = v$.

[Diagram of a triangle with arrows and labels $\phi(h)$]
Proof of Theorem 6.1 for $G = \mathrm{SL}_2(\mathbb{R})$.
Already know it for $g = a_t$; so fix $s \in \mathbb{R} \setminus \{0\}$ and let $g = u_s$ (the remaining case for the unbounded subgroup of G).

Suppose that $f \in L^2(X, \mu)$ is invariant under $\rho(g)$.

Apply Proposition 6.3 with

$$F = g^Z \text{ and } h_k = v_{1/k} = \begin{pmatrix} 1 & 0 \\ 1/k & 1 \end{pmatrix}. $$

For $m, n \in \mathbb{Z}$, write

$$g^n v_{1/k} g^m = \begin{pmatrix} 1 & ns \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1/k & 1 \end{pmatrix} \begin{pmatrix} 1 & ms \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 + \frac{ns}{k} & ns \\ 1/k & 1 \end{pmatrix} \begin{pmatrix} 1 & ms \\ 0 & 1 \end{pmatrix}. $$

$$2 = \frac{1 + \frac{ns}{k}}{1/k} \left(1 + \left(1 + \frac{ns}{k}\right) ms + ns \right) \rightarrow y \rightarrow 1/2,$$
For large enough k we may choose

- $n = n(k)$ such that $1 + \frac{ns}{k} \to 2$ as $k \to \infty$;
- $m = m(k)$ with $(1 + \frac{ns}{k}) ms + ns$ uniformly bounded, so one can choose a subsequence for which

$$
(1 + \frac{ns}{k}) ms + ns \to y
$$

for some $y \in \mathbb{R}$;

- then ms/k has to converge to $1/2$.

This way we conclude that $g^n v_{1/k} g^m$ converges to $h :=
\begin{pmatrix} 2 & y \\ 0 & 1/2 \end{pmatrix}$.

By Proposition 6.3 we see that f is invariant under $\rho(h)$. Since this h is conjugate to a_t for some t, the theorem follows from the previous case.

The case $d > 2$ follows with some more work using many copies of $SL_2(\mathbb{R})$s inside $SL_d(\mathbb{R})$. \qed
It turns out that the representation-theoretic approach to actions on $\Gamma \backslash G$ does not stop at ergodicity. Using similar ideas and building up on Theorems 6.1 and 6.1, it is possible to prove

Theorem 6.4. Let $\Gamma \subset G = \text{SL}_d(\mathbb{R})$ be a lattice, $X = \Gamma \backslash G$, and $\mu = m_X$. Then the action of G on (X, μ) is mixing.

Recall that it means the following:

$$\langle U_{g_n} \varphi, \psi \rangle \rightarrow \int_X \varphi \, d\mu \int_X \psi \, d\mu$$

for any $\varphi, \psi \in L^2(X, \mu)$ and any $(g_n) \subset G$ with $g_n \to \infty$ as $n \to \infty$

(that is, eventually leaving any compact subset of G)

\[\mapsto\]

$$\langle U_{g_n} \varphi, \psi \rangle \to 0 \ \forall \varphi, \psi \in L^2_0(X, \mu) \text{ and } (g_n) \subset G \text{ as above.}$$
Similarly to what we have done about ergodicity, the above theorem follows from an analogous statement involving unitary representations of G:

Theorem 6.4. Let \mathcal{H} be a Hilbert space, and let ρ be a unitary representation of $G = \text{SL}_d(\mathbb{R})$ on \mathcal{H} without nonzero $\rho(G)$-invariant vectors. Then $\forall \, v, w \in \mathcal{H}$ the matrix coefficients $\langle \rho(\cdot)v, w \rangle$ vanish at ∞:

$$\langle \rho(g_n)v, w \rangle \to 0 \text{ for any } (g_n) \subset G \text{ with } g_n \to \infty \text{ as } n \to \infty.$$

(Equivalently, $\rho(g_n)v \to 0$ in the weak topology on \mathcal{H}.)
Remark: It actually suffices to prove the theorem for g_n being diagonal matrices with positive entries.

The reason is **Cartan decomposition**: any $g \in G$ can be written as kak', where a is diagonal and $k, k' \in K = SO(d)$.

Indeed, suppose that

$$g_n = k_n a_n k_n'$$

$$G = K A T K$$

$$|\langle \rho(k_n) \rho(a_n) \rho(k_n') v, w \rangle| = |\langle \rho(k_n a_n k_n') v, w \rangle| \geq \varepsilon$$

$$| \langle \rho(a_n k_n') v, \rho(k_n a_n') w \rangle | \geq \varepsilon$$

$$| \langle \rho(k_n') v, \rho(a_n) \rho(k_n')^{-1} w \rangle | \geq \frac{\varepsilon}{2}$$

$$| \langle \rho(a_n) \rho(k_n') v, \rho(k_n')^{-1} w \rangle | \geq \frac{\varepsilon}{4}$$
Proof of Theorem 6.4 for $d = 2$. Suppose for some $\nu \in \mathcal{H}$ the sequence $\rho(a_{t_n})\nu$ weakly converges to $\nu_0 \in \mathcal{H}$, where, as before, $a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$.

We need to prove that $\nu_0 = 0$.

In view of Theorem 6.1, it is enough to prove that

ν_0 is invariant by $\rho(u_s)$,

where, as before, $u_s = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$.

\[\text{ergodicity} \implies \text{mixing} \]
Of course we are again going to use the fact that

$$a_{-t} u_s a_t \to e \text{ as } t \to +\infty.$$

Take any $w \in \mathcal{H}$, and write

$$\langle v_0, w \rangle = \lim_{n \to \infty} \langle \rho(a_{t_n}) v, w \rangle = \lim_{n \to \infty} \langle v, \rho(a_{-t_n}) w \rangle$$

and also, for any $s \in \mathbb{R}$

$$\langle \rho(u_s) v_0, w \rangle = \langle v_0, \rho(u_{-s}) w \rangle$$

$$= \lim_{n \to \infty} \langle \rho(a_{t_n}) v, \rho(u_{-s}) w \rangle$$

$$= \lim_{n \to \infty} \langle \rho(u_s a_{t_n}) v, w \rangle$$

$$= \lim_{n \to \infty} \langle \rho(a_{-t_n} u_s a_{t_n}) v, \rho(a_{-t_n}) w \rangle.$$
Hence
\[
\left| \langle \rho(u_s)v_0, w \rangle - \langle v_0, w \rangle \right| = \lim_{n \to \infty} \left| \langle \rho(a_{-t_n}u_s a_{t_n})v - v, \rho(a_{-t_n})w \rangle \right|
\leq \lim_{n \to \infty} \| \rho(a_{-t_n}u_s a_{t_n})v - v \| \| w \| = 0.
\]

Since this holds for all \(w \in \mathcal{H} \), we get \(\rho(u_s)v_0 = v_0 \) as claimed.

Remark. The scheme of the argument is quite general and is applicable to more general groups; again, the case of \(\text{SL}_2(\mathbb{R}) \) is a building block for a proof of the general result. All that is needed is

- Cartan decomposition;
- existence of a nontrivial element \("u_s" \) contracted by the conjugation with the acting elements \("a_t" \).

Then the absence of mixing for \("a_t" \) will force an invariant vector for \("u_s" \), that is, the absence of ergodicity. In other words, the proof basically says that ergodicity implies mixing.
Example. Consider \(G = \text{SL}_d(\mathbb{R}) \), \(\Gamma \) a lattice in \(G \), and look at the action of

\[
a_t := \text{diag} \left(e^{t/m}, \ldots, e^{t/m}, e^{-t/n}, \ldots, e^{-t/n} \right) = \begin{pmatrix}
 e^{t/m}I_m & 0 \\
 0 & e^{-t/n}I_n
\end{pmatrix}
\]

on \(\Gamma \setminus G \), where \(d = m + n \),

kind of a higher-dimensional analogue
of the geodesic flow on \(\Gamma \setminus \text{SL}_2(\mathbb{R}) \).

Then upper-triangular (lower-triangular) unipotent matrices
are contracted (expanded) by the map \(g \mapsto a_{-t}ga_t \).

Specifically we can define

\[
U := \{ u_Y : Y \in M_{m \times n}(\mathbb{R}) \}, \text{ where } u_Y := \begin{pmatrix}
 I_m & Y \\
 0 & I_n
\end{pmatrix}
\]

(contracting horospherical subgroup with respect to \(a_1 \))

and

\[
V := \{ v_Y : Y \in M_{n \times m}(\mathbb{R}) \}, \text{ where } v_Y := \begin{pmatrix}
 I_m & 0 \\
 Y & I_n
\end{pmatrix}
\]

(expanding horospherical subgroup with respect to \(a_1 \)).
Why so much emphasis on mixing? Turns out that it is quite useful for discovering many other wonderful properties of the action. Here is a simple picture.

"apple - banana argument"
And here is what can be proved.

The set-up, again:

- $G = \text{SL}_d(\mathbb{R})$, Γ is a lattice in G, $X = \Gamma \backslash G$, $d = m + n$;
- $a_t = \begin{pmatrix} e^{t/m} I_m & 0 \\ 0 & e^{-t/n} I_n \end{pmatrix}$, $\nu_Y = \begin{pmatrix} 1 \\ Y \\ 1 \end{pmatrix}$, $V = \{ \nu_Y \}$;
- $a_{-t} \nu_Y a_t = \nu_{e^{(\frac{1}{m} + \frac{1}{n})t} Y}$.

Theorem 6.5. Let f be a bounded measurable function on V with compact support, and let $\psi \in L^2(X)$ be uniformly continuous. Then for any compact subset Q of X and any $\varepsilon > 0$ there exists $T > 0$ such that

$$\left| \int_V f(\nu) \psi(xva_t) \, dm_V - \int_V f(\nu) \, dm_V \int_X \psi \, d\mu \right| \leq \varepsilon$$

for all $x \in Q$ and all $t \geq T$.
In other words:

- expanding translates of V-orbits by the a_t-action become equidistributed in X;

- in particular, for any $x \in X_d$ and almost every $v \in V$, the trajectory $\{xva_t : t \geq 0\}$ is dense in X_d;

- the rate of equidistribution is uniform over the initial point lying in a fixed compact subset of X.
Sketch of proof:

- Since \(\text{supp}(f) \) and \(Q \) are compact, we can write

\[
f = \sum_{j=1}^{N} f_j
\]

with \(\pi_y \) injective on \(\text{supp}(f_j) \) for all \(y \in Q \) and for each \(j \).

Hence one can without loss of generality assume that the maps \(\pi_y \) are injective on \(\text{supp}(f) \) for all \(y \in Q \).
- **thicken** \(f \) to create functions \(\phi \) on \(G \) and \(\varphi_y := \phi \circ \pi_y^{-1} \) on \(X \) for any \(y \in Q \);

- **apply mixing:**

\[
\int_X \varphi_y(x) \psi(xa_t) \, d\mu(x) \to \int_X \varphi_y \, d\mu \int_X \psi \, d\mu;
\]
\[
\int_X \varphi_y \, d\mu \text{ with } \int_V f \, dm_V
\]

and
\[
\int_X \varphi_y(x) \psi(xa_t) \, d\mu(x) \text{ with } \int_V f(v) \psi(yva_t) \, dm_V.
\]
Need to integrate on G in coordinates coming from subgroups U, V and $A := \{\text{block-diagonal matrices}\}$.

Since the Lie algebras of these subgroups span the Lie algebra of G, the multiplication map $V \times A \times U \to G$ is a diffeomorphism on a small neighborhood of the identity;

The Haar measure on G decomposes according to Lemma 5.10, with $W = AU$, and Haar measure on W can be written similarly to what was done in the proof of Claim 5.13.
Conclusion 1: \(\forall \varepsilon > 0 \ \exists T > 0 \text{ such that } t \geq T\)

\[
\left| \int_V f(v)\psi(yva_t) \, dm_V - \int_X \varphi_y(x)\psi(xa_t) \, d\mu(x) \right|
\]

\[
= \left| \int_G \varphi(vw)\psi(yva_t) \, dm_G(vw) - \int_G \varphi(vw)\psi(yvwa_t) \, dm_G(vw) \right|
\]

\[
= \left| \int_G \varphi(vw)(\psi(yva_t) - \psi(yvwa_t)) \, dm_G(vw) \right| \leq \varepsilon/2
\]

\[
\psi(yva_t a_t^{-1} wa_t)
\]

\[\epsilon\]
We also need to apply mixing to functions \(\varphi_y \) uniformly in \(y \in Q \):

Proposition 6.6. Let \(\mathcal{H} \) be a Hilbert space, and let \(\rho \) be a unitary representation of a locally compact group \(G \) on \(\mathcal{H} \).

Then the following are equivalent:

1. \(\forall v, w \in \mathcal{H} \) the matrix coefficients \(\langle \rho(\cdot)v, w \rangle \) vanish at \(\infty \):

 \[\langle \rho(g_n)v, w \rangle \to 0 \text{ for any } (g_n) \subset G \text{ with } g_n \to \infty \text{ as } n \to \infty; \]

2. for any two subsets \(\mathcal{V}, \mathcal{W} \) of \(\mathcal{H} \) which are compact in the norm topology on \(\mathcal{H} \) and \(\forall \varepsilon > 0 \) there exists a compact subset \(L \) of \(G \) such that

 \[v \in \mathcal{V}, \ w \in \mathcal{W}, \ g \notin L \implies |\langle \rho(g)v, w \rangle| \leq \varepsilon. \]
Proof. \((2) \implies (1)\) is clear;
not \((2) \implies \exists\) compact \(\mathcal{V}, \mathcal{W} \subset \mathcal{H}, \nu_n \in \mathcal{V}, \omega_n \in \mathcal{W}\)
and \(g_n \to \infty\) in \(G\) such that

\[
|\langle \rho(g_n)\nu_n, \omega_n \rangle| \geq \varepsilon
\]

\[
Downarrow
\]

\[
|\langle \rho(g_n)\nu_n\omega_n^{-1} \rangle| > \frac{\varepsilon}{2}
\]

\[
|\langle \nu_n, \rho(g_n^{-1})\omega_n \rangle| > \frac{\varepsilon}{2}
\]

\[
\implies \text{contradiction to (1)}
\]

Conclusion 2: for any \(\varepsilon > 0\) there exists \(T > 0\) such that

\[
\left| \int_X \varphi_y(x)\psi(xa_t) \, d\mu(x) - \int_X \varphi_y \, d\mu \int_X \psi \, d\mu \right| \leq \varepsilon/2
\]

for all \(y \in Q\) and all \(t \geq T\).
Combining the two conclusions, for any \(\varepsilon > 0 \) we obtain \(T > 0 \) such that \(y \in Q \) and \(t \geq T \)

\[
\Downarrow
\left| \int_V f(v) \psi(y v a_t) \, dm_V - \int_X \varphi_y \, d\mu \int_X \psi \, d\mu \right|
= \left| \int_V f(v) \psi(y v a_t) \, dm_V - \int_V f \, dm_V \int_X \psi \, d\mu \right| \leq \varepsilon. \quad \square
\]

Remarks.

- The argument can be traced back to the Ph.D. Thesis of Margulis (1969, unpublished until 1990s), where similar results were proved for geodesic flows in variable negative curvature.

- Even though the proof is presented for \(G = \text{SL}_d(\mathbb{R}) \), the argument, together with the main principle

 “mixing \(\implies \) equidistribution of unstable leaves”

works for arbitrary homogeneous spaces.
Here is one interesting consequence of Theorem 6.5.

Theorem 6.7. Suppose that Γ is a uniform lattice in G, and let V be a horospherical subgroup of G (expanding horospherical for some a_t). Then the V-action on $X = \Gamma \backslash G$ is **uniquely ergodic**. That is, m_X is the unique V-invariant probability measure on X.

In particular, the horocycle flow on the unit tangent bundle of a compact quotient of \mathbb{H} is uniquely ergodic (Furstenberg, 1970s).

Proof.