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1. What we did in class

Compactness is an abstract notion which may have sounded new to most of you. So I decided
to write down neatly what we managed to prove in class, and also list some additional facts in
the form of problems. Feel free to think about them if you want to familiarize yourself with this
notion.
Recall that a metric space is called compact if any sequence of its elements has a convergent
subsequence. This is not the only way to define compactness. In fact the following fundamental
theorem was proved in class:

Theorem 1.1. The following conditions are equivalent:

(1) X is compact;
(2) any infinite subset of X has a limit point;
(3) if A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ . . . is a nested sequence of nonempty closed sets, then their

intersection ∩∞n=1An is not empty;
(4) any open covering of X has a finite subcovering.

We also proved

Proposition 1.2. Let X be a metric space.

(1) If X is compact and Y ⊂ X is closed, then Y (with the metric induced from X) is compact;

(2) if Y ⊂ X is compact, then it is closed (consequently, a subset of a compact metric space
is compact if and only if it is closed).

What are examples of compact spaces? Compact subsets of Rn are characterized by the following
theorem, due to Bolzano and Weierstrass:

Theorem 1.3. A subset X ⊂ Rn is compact if and only if it is closed and bounded.

In particular, [0, 1] ⊂ R is compact. Another example is given by the space of sequences,

ΛN = {x = (xn) : xn ∈ Λ, n ∈ N},

where Λ = {0, 1, . . . , k − 1} is a finite alphabet, and the distance is defined by

d(x, y) = 2−m, where m is the length of the maximal common initial segment of x and y.

Proposition 1.4. ΛN is compact.
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2. Problems

The following is the list of other interesting facts related to compactness, which you can treat
as an optional homework. Most of them are proved in Appendices E and F of the lecture notes.
However if you are iterated in trying those problems, don’t look at the notes right away and try
to come up with solutions on your own. You can always check your work later.

Exercise 2.1. Say that a collection {Ai} of subsets of X satisfies the finite intersection
property if for every its finite subcollection {A1, . . . , An}, the intersection A1 ∩ · · · ∩ An is not
empty. Prove that a metric space X is compact if and only if for every collection {Ai} of closed
sets satisfying the finite intersection property, the infinite intersection ∩iAi is non-empty.

Exercise 2.2. Let X be a compact metric space, Y an arbitrary metric space, and let f : X → Y
be continuous. Then:

(a) f(X) is compact;
(b) (Heine-Cantor Theorem) f is uniformly continuous, that is, for any ε > 0 there exists

δ > 0 such that f
(
B(x, δ)

)
⊂ B

(
f(x), ε

)
for any x ∈ X.

Exercise 2.3. If (X, dX) and (Y, dY ) are metric spaces, their direct product

X × Y = {(x, y) : x ∈ X, y ∈ Y }
can be viewed as a metric space with the product metric

d
(
x1, y1), (x2, y2)

) def=
√

(x1 − x2)2 + (y1 − y2)2 .

Prove that:
(a) a sequence (xn, yn) converges to (x, y) in the product metric if and only if xn → x in X

and yn → y in Y ;
(b) X × Y is compact if and only if both X and Y are compact. (This makes it possible to

derive the general case of Theorem 1.3 from the case n = 1.)

Exercise 2.4. Consider a map f from {0, 1}N to [0, 1] given by

f(x) = 0.x1x2 . . .

where x = (xn) and 0.x1x2 . . . is a binary representation of a real number. Prove that f is
continuous. (Thus one can use Proposition 1.4 and Exercise 2.2(a) to give another proof of the
compactness of [0, 1].)

Exercise 2.5. A metric space is called separable if it has a countable sense subset. Prove that
compact metric spaces are separable.

Exercise 2.6. Let X be the set of real-valued sequences x = (xn) such that their squares form
a convergent series, that is,

∑∞
n=1 x

2
n <∞. Define a metric on X by

d(x, y) =

( ∞∑
n=1

(xn − yn)2
)1/2

(this can be viewed as an infinite-dimensional analogue of the Euclidean metric on Rn). Prove
that

(a) the closed unit ball around zero, that is, B = {x ∈ X : d(x, 0) ≤ 1}, is not compact;
(b) the so-called Hilbert cube

H = {x ∈ X : |xn| ≤ 2−n for all n ∈ N}
is compact.


