In our study of the mass connected to a spring, we obtained the second-order constant coefficient eqn

\[m \frac{d^2 y}{dt^2} + b \frac{dy}{dt} + ky = 0, \]

where \(m \) is mass, \(b \) is damping constant, and \(k \) is spring constant.

We showed it is a real p.t. if \(r \) is a root to the characteristic poly

\[mr^2 + br + k = 0 \]

When \(b = 0 \), \(\frac{d^2 y}{dt^2} + \left(\frac{k}{m} \right)y = 0 \) and the char poly \(r^2 + \frac{k}{m} = 0 \) has roots \(\pm iw \) for \(w = \sqrt{k/m} \).

\[e^{iwt} = \cos(\omega t) + i \sin(\omega t) \] by Euler's form, and we have a simple harmonic oscillator.

General soln: \(y(t) = C_1 \sin(\sqrt{\frac{k}{m}} t) + C_2 \cos(\sqrt{\frac{k}{m}} t) \)
For nonzero damping \((b \neq 0)\), we found that there are 3 possibilities depending on the parameters:

\[
\begin{align*}
(1) \quad & b^2 - 4km < 0, \quad 2 \\
& \text{complex-valued roots} \\
& r_1 = \alpha + i\omega \\
& r_2 = \alpha - i\omega \\
& \text{Underdamped} \\
& \text{Den soln: } y(t) = C_1 e^{r_1 t} \sin(\omega t) + C_2 e^{r_2 t} \cos(\omega t)
\end{align*}
\]

\[
\begin{align*}
(2) \quad & b^2 - 4km > 0, \quad 2 \\
& \text{distinct real roots} \\
& r_1, r_2 \\
& \text{Overdamped} \\
& \text{Den soln: } y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}
\end{align*}
\]

\[
\begin{align*}
(3) \quad & b^2 - 4km = 0, \quad \text{real root w/mult. 2} \\
& \text{Den soln: } y(t) = C_1 e^{rt}
\end{align*}
\]
Given solution: \(y(t) = C_1 e^{rt} + C_2 te^{rt} \) Critically damped

Next we study each case in detail

Underdamped \(b^2 - 4km < 0 \) - damping relatively small

(Ex) \(m = 1 \), \(b = 0.2 \), \(k = 1.01 \)

char. poly \(r^2 + 0.2r + 1.01 = 0 \)

two roots \(-0.1 \pm \sqrt{0.04 - 1.01} = \frac{-0.2 \pm \sqrt{-0.94}}{2} = -0.1 \pm i \)

Complex-valued solution is

\[y(t) = e^{(-0.1\pm i)t} = e^{-0.1t} (e^{it}) \]

\[= e^{-0.1t} (\cos(t) + i\sin(t)) \]

\[= e^{-0.1t} (\cos(t) \pm i\sin(t)) \]

Gen. soln: \(y(t) = C_1 e^{-0.1t} \cos(t) + C_2 e^{-0.1t} \sin(t) \)

\(t \) Oscillations with Decay

Decay with oscillations
Overdamped

1. \[b^2 - 4km > 0 \] - relatively large damping

(ex) \(m = 1, b = 3, k = 1 \)

no char poly \(r^2 + 3b + 1 = 0 \)

has roots \(x = \frac{-3 \pm 5}{2} \)

In this case, two real and negative roots,

faster decay, slower decay

then soln: \(y(t) = C_1 e^{\frac{-3 + 5}{2} t} + C_2 e^{\frac{-3 - 5}{2} t} \)

initial cond \((y_0, v_0) = (3, 0)\)

\((-0.25, 3)\)

Critically damped

\[b^2 - 4km = 0 \] - damping balanced w/other params
(Ex) \(m=1, b=2, k=1 \)

\[r^2 + 2r + 1 = 0 \]

which has a repeated root \(r = -1 \)

Gen soln: \(y(t) = C_1 e^{-t} + C_2 te^{-t} \)

\[\text{Twice critical damping} \]

\[\text{One-half critical damping} \]

\[\text{No oscillations} \]

\[\text{Most rapid relaxation to EQ} \]

In overdamped case, damp oscillations more quickly but slow down motion

Exercise

Consider

\[\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + y = 0 \]
\[m \frac{d^2y}{dt^2} + 3 \frac{dy}{dt} + 2y = 0 \]

What happens in the limit \(m \to 0 \)?

First, some algebra:

\[b \cdot x + c = 0 \Rightarrow x = -\frac{c}{b} \]

\[a \cdot x^2 + b \cdot x + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

What happens in limit \(a \to 0 \)? Do two roots converge to \(x = -c/b \)? Two roots become one?

We'll use:

For small, \(\sqrt{1 + x} \approx 1 + x/2 \) by first-order Taylor series.

\[x = \frac{-b}{2a} + \frac{b}{2a} \sqrt{1 - \frac{4ac}{b^2}} \approx \frac{-b}{2a} + \frac{b}{2a} \left(1 - \frac{2ac}{b^2} \right) \]

\[x_+ = \frac{-b}{2a} + \frac{b}{2a} - \frac{c}{b} = -\frac{c}{b} \]

\[x_- = \frac{-b}{2a} + \frac{c}{a} \to \infty \]

We recover limiting root. Second root runs off to \(\infty \).
1) Classify as over, under, or critically damped in terms of m.

2) Express the solution in terms of roots of m (assume small m) over-damped.

$$\pm \frac{-3 \pm \sqrt{9-8m}}{2m}$$

Assume m small (over-damped).

3) What are the limiting values of r_e as $m \to 0$?

Hint: use $\sqrt{1+x} \approx 1 + \frac{x}{2}$ for x small.

4) Compare to solution to limiting eqn

$$3 \frac{dy}{dt} + 2y = 0$$

How are your answers?
same/different?